

敬请关注我公司微信,输入关键词"光合仪", 则6400的所有"手把手教您学会光合仪"的系列 资料及注意事项即可瞬间进驻您的手机,方便您

随时学习参考……

基因有限公司农业环境科学部 北京力高泰科技有限公司

和测量过程

刘美玲

北京力高泰科技有限公司 基因有限公司 农业环境科学部

• 一、日常检查

• 二、加载配置(Config Menu)

• 三、校准 (Calib Menu)

• 四、测量过程

1、预热期间检查

2、预热后检查

啊烦。

1.1 检查光源和光量子传感器

- 检查光源是否工作,且工作正常;
- 检查g行ParIn_µm 和ParOut_µm传感器是否有

1.2 检查温度

- 检查h行三个温度值Tblock, Tair和Tleaf, 是否合理, 且彼此相差应该在1℃以内;
- 直接测量叶片温度时,叶温热电偶的结点位置应高 *于叶室垫圈约1mm,保证夹叶片时能与叶片充分接 触;如果使用能量平衡方法测量叶片温度,则结点 位置应低于叶室垫圈1mm,确保夹叶片时,接触不 到叶片。*

1.3 检查大气压传感器

• 检查g行Prss_kPa值是否合理。

一般在海平面大气压值约100kPa , 海拔1000英 尺大气压为97 kPa , 5000英尺约83 kPa 且随天 气变化, 大气压可能会有1到2 kPa的变化。

1.4 检查叶室混合扇

在测量菜单中,按3F3(在LI-6400XT,按2F1), 按O关闭,或按F打开叶室混合扇,将分析器头 部放到耳朵旁边,听分析器头部声音是否有变 化,如果有变化,表示正常。

1、预热期间检查

1.5 检查是否存在气路堵塞

- 设定流速为1000,化学管旋钮拧到从完全bypass, 检查仪器实际流速能否达到650以上,然后将化学 管旋钮从完全bypass调节到完全scrub,检查流速 下降是否大于10。
- 常见堵塞地方是:化学管内过滤嘴;化学管顶部
 的两个小的聚乙烯透明管。

2.1 检查流速零点

- 关闭泵,然后关闭叶室混合扇;
- 检查b行flow是否在±2微摩尔之间。如果在, 表示正常; 如果不在此范围,需进入校准菜单

,进行Flow meter zero。

2、预热后检查

2.2 检查CO₂和H₂O IRGAs 零点

- 将两个化学管都旋至完全Scrub位置,完全闭合叶室;
- 等待大约5分钟,参比室和样品室CO₂和H₂O会降到零 附近。如果CO₂读数在±5微摩尔以内,H₂O在±0.5毫 摩尔每摩尔以内,说明零点正常,不需要校准。如果 它们超过这个范围,我们建议您再等大约10min。如果 还不能达到要求,需进入校准菜单,进行IRGAs zero

2.3 校准叶温热电偶的零点

 拔出紫色插头,检查h行Tblock和Tleaf温度差值是 否在0.1 C以內,如果不在0.1 C以內,用一字型小 螺丝刀对分析器底部的电位调节器进行温度校准, 顺时针旋转Tleaf升高,反之降低,直到Tleaf基本 等于Tblock。完成后将紫色插头重新插好。

2.4 叶室的漏气检查

- 将化学管调到完全Scrub,然后在叶室四周吹气, 如果发现a行CO₂S的读数变化小于2 µmol mol⁻¹,说 明叶室密封的比较好,没有漏气。如果变化超过
 2ppm以上,说明叶室可能有漏气。
 - 常发生叶室漏气的地方:<u>叶室垫圈</u>;上下叶室的<u>O</u> 形密封圈;另一个可能漏气的地方是<u>排气管</u>。

- 2.5 检查匹配阀
- 检查匹配阀是否工作;
- 应该在每天开始测量前,进行一次匹配。当全天 都在相同的CO₂浓度下做实验,一般每20到30分钟 就应当匹配一次。如果做实验时,每次测量都要 改变CO₂浓度,那么每改变一次CO₂浓度,就需要 进行一次匹配。

• 一、日常检查

•二、加载配置(Config Menu)

• 三、校准 (Calib Menu)

• 四、测量过程

(1)硬件连接,开机,进入主菜单(任意配置)。
 (2)按f2(Config Menu),进入。
 (3)按上下箭,选择 Installation Menu, enter。
 (4)按上下箭,选择 "6400-02 or -02B LED Source", enter

(5) 显示要安装LED的序列号。如果显示的序列号和 LED 上 的序列号一致(可以在LED上找到各自的序列号),则按Y ; 否则按N,对比LED红蓝光源校正信息,正确输入仪器, 当出现"Is this ok"输入"Y"。

(7) 确认叶室底部类型(standard opaque bottom or clear bottom), 按上下箭选中对象, enter。 (8) 光源选择Select light source, 按上下箭, 选择6400-02B **Red LED** #SI-对应序列号, enter。 (9) 叶温测量方式,直接测量,按M: 能量平衡模式,按E。 (10) 选择叶片类型, 阔叶, 按B, 针叶, 按N。 (11) 点击F2, save。配置命名,不用改变, enter,保存完 按quit, esc, 这时系统提示是否继续配置其它设置, 如 果继续,则按Y,否则按N,完成配置。

• 一、日常检查

• 二、加载配置(Config Menu)

• 三、校准 (Calib Menu)

• 四、测量过程

三、校准(Calib Menu)

———以IRGA(CO2/H2O)校准和注入系统校准为例

- ・IRGA(CO₂和H₂O)校准
 - (1) 硬件连接,开机,进入主菜单(任意配置)。

(2)保证空叶室且关闭,使用新鲜的碱石灰和干燥 剂,将化学管全部旋转到完全Scrub状态。

(3) 按F3 (Calib Menu), 进入。

三、校准(Calib Menu)

—以IRGA(CO2/H2O)校准和注入系统校准为例

• IRGA(CO₂和H₂O)校准

(4) 按上下箭,选择IRGA Zero, enter。按Y继续。只校准CO2,在 CO2浓度稳定后至少等待5分钟,按F1 (Auto CO2);如果只校准 H2O,则在H2O浓度稳定后至少等待20分钟,按F2 (Auto H2O); 两个都校准,则在CO2和H2O浓度稳定后,按F3 (Auto All)。按 Fauto后,当CO2稳定在±1以内,H2O稳定在±0.1以内,则按F5 quit, esc退到上一级菜单。

(5) 对于LI-6400XT open 6.1以上版本,完成上一步则自动保存,但 对于低版本仪器,需要在上一步完成退出后,按上下箭选择"View , Store Zeros & Spans", enter,按F1(store),根据提示,按Y,直 到保存完毕, enter,连按esc,退出,校准完毕。

三、校准(Calib Menu)

——以IRGA(CO2/H2O)校准和注入系统校准为例

• CO2注入系统校准

 (1) 开机进入主菜单,按F3 (Calib Menu),按上下箭, 选中CO₂ Mixer calibrate, enter,如果CO₂浓度达到最高 值,且该值高于2000µmol mol⁻¹,则按Y,表OK。
 (2) 系统自动进行8点校准,完成后提示"plot this?", 按 "Y",如果校准曲线平滑近直,则按esc,系统提示 "implement this?"按 "Y",然后按esc。校准完成。

• 一、日常检查

• 二、加载配置(Config Menu)

- 三、校准 (Calib Menu)
- 四、测量过程

四、LI-6400/XT测量过程

- 1、非控制环境条件的测量步骤(手动测量)
- 2、控制环境条件的测量步骤

手动测量

自动测量: {光响应曲线 CO2响应曲线

1、非控制环境条件的测量步骤

(1) 装化学药品, 距药品管口1cm即可。

(2) 硬件连接(如果使用CF卡,则插入主机后固定槽内),安 装好电池。

(3) 开机,配置界面选择Factory Default,连接状态按"Y", 进入主菜单,预热约20分钟。

(4) 进行日常检查, 一切OK, 则开始进入测量操作步骤, 进入主菜单F4 (NEW Msmnts)。

(5) 将两个化学药品管的调解旋钮都拧到完全Bypass状态。

1、非控制环境条件的测量步骤

(6) 打开叶室, 夹好测量的植物叶片

(7) 按1,F1 (Open LogFile), 选择文件保存的位置(主 机or CF卡)建立一个文件, enter, 输入一个remark, enter。

(8) 等待a行参数稳定; b行 ΔCO_2 值波动<0.2 μ mol mol⁻¹ , Photo值稳定在小数点后一位; c行参数在正常范围 (<u>0 < Cond < 1</u>、<u>Ci > 0</u>、<u>Tr > 0</u>)。

(9) 按1, F1(Log)记录数据。

1、非控制环境条件的测量步骤

(10) 更换另一叶片, 按F4, 添加remark, 重复6~9步骤, 进行测量。至少半小时进行一次Match。 (11) 按F3 (Close file),保存数据文件。 (12) 导数据: 用RS-232数据线连接电脑和LI-6400, 按esc 退回主界面, 按F5(Utility Menu), 按上下箭头选择"File Exchange Mode",在电脑上预先安装SimFX软件,双击打 开LI6400FileEx,点击File,选择Prefs,选择Com端口, 按Connect, 连接成功后, 选择文件传输到指定位置(CF 卡内数据还可通过读卡器直接将数据导入电脑)。

1、非控制环境条件的测量步骤

 (13)按esc,退回主界面,关机。
 (14)试验结束后,切记把化学管旋钮旋至中间松 弛状态;旋转叶室固定螺丝,保持叶室处于打开 状态,不压紧泡沫垫圈。

2、控制环境条件的测量步骤

(1) 手动测量

1) 安装LED光源和CO₂注入系统。 2) 开机,选择LED光源配置,按"Y"连接,进入主菜单, 预热。

3) 按F4进入测量菜单,进行日常检查(同前)。
5) 将CO₂吸收管完全Scrub, Dessicant管完全Bypass,按
2,按F3(Mixer),设定CO₂浓度;按f5,选择"Q)
Quantum Flux XXX mol/m2/s", enter,输入需要光强,

2、控制环境条件的测量步骤

(1) 手动测量

6) 控制叶片温度。2,F4,选择Block温度, enter, 输入测定温度(环境温度的正负6度以内), enter; 再按3, F1(area)输入实际测量的叶片面 积。

7) 以上设定好环境条件, 之后的测量操作同前。

2、控制环境条件的测量步骤

(2) 光响应曲线

- 1) 安装红蓝光源,装好化学药品,连接硬件。
- 2) 开机,选择红蓝光源配置,按"Y"连接,进入主菜单,预 热。
- 3) 按F4进入测量菜单,进行日常检查。

 4) 将CO₂化学管完全Scrub (有CO₂注入系统时,没有则完全 Bypass), Dessicant 管完全Bypass。

2、控制环境条件的测量步骤

(2) 光响应曲线

- 5) 按2,F3(CO₂ Mixer),按上下箭选择 R) Ref CO₂ XXX µmol mol⁻¹, enter,设定CO₂浓度为环境CO₂浓度(约400µmol mol⁻¹),接enter。
- 6) 打开叶室,夹好叶片,闭合叶室,进入测量菜单。
 7) 按1,F1, Open LogFile,选择文件要保存的位置(主机or CF卡),建立文件, enter,输入一个remark, enter。

2、控制环境条件的测量步骤

(2) 光响应曲线

8) 按5, F1(Auto prog), 进入自动测量界面, 按上下箭头键选 择Light Curve, enter进入, 命名文件, enter, 添加remark , enter, 出现Desired lamp settings, 从高到低设定光强梯 度,如: 1500 1200 1000 750 500 400 300 200 150 100 50 0 (数值间用空格间隔,以上梯度仅供参考),enter后,出现 Minimum wait time (secs): 设定120, enter, 出现Maximum wait time(secs): 设定200或240, enter, 出现Match if $|\Delta CO_2|$ less than (ppm): 设定50或100, enter, 按Y, 进入自动测量 ,等待测量结束。

2、控制环境条件的测量步骤

(3) CO₂响应曲线

1) 安装红蓝光源,装好化学药品,连接硬件。

- 2) 开机,选择进入红蓝光源配置,按"Y"连接,进入主菜 单,预热。
- 3) 按F4进入测量菜单,进行日常检查。
- 4) 安装CO₂钢瓶(<u>O形圈</u>),将CO₂化学管完全Scrub, Dessicant完全Bypass。打开CO₂注入系统,校准,完成后, 再按2,F5(Lamp),按上下箭选择Q)Quantum Flux XXX mol/m²/s, enter进入,设定为饱和光强(根据光响应曲线确 定),按enter。

2、控制环境条件的测量步骤

(3) CO2响应曲线

5) 打开叶室,夹好叶片,闭合叶室,进入测量菜单。
6) 按1,F1, Open LogFile, 建立文件, enter, 输入一个 remark, enter。

2、控制环境条件的测量步骤

(3) CO₂响应曲线

7) 按5, F1(Auto prog),进入自动测量界面,按上下箭选择A-Ci *Curve*, enter进入, 命名文件, enter, 添加remark, enter, 出现Desired CO, settings,从高到低设定CO,浓度梯度,如 *:* 400 200 150 100 50 400 400 600 800 1000 1200 1500 1800(数值间空格间隔,上述梯度仅供参考),enter,出现 Minimum wait time(secs): 设定60, enter, 出现Maximum wait time(secs): 设定300, enter, 出现Match if |△CO2| less than (ppm): 设定50或100, enter, 按Y,则进入自动测量,等待 测量结束。

CO2响应曲线拟合参考

• http://www.blackwellpublishing.com/plants ci/pcecalculation/

http://onlinelibrary.wiley.com/doi/10.1111/ j.1365-3040.2007.01710.x/abstract

