
Using Background Programs
on the LI-6800 Portable Photosynthesis System

Version 1.4

Using Background Programs
on the LI-6800 Portable Photosynthesis System

for Bluestem OS™ version 1.4

LI-CORBiosciences
4647 Superior Street
Lincoln, Nebraska 68504
Phone: +1-402-467-3576
Toll free: 800-447-3576 (U.S. and Canada)
envsales@licor.com

Regional Offices

LI-CORBiosciences GmbH
Siemensstraße 25A
61352 Bad Homburg
Germany
Phone: +49 (0) 6172 17 17 771
envsales-gmbh@licor.com

LI-CORBiosciences UKLtd.
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
United Kingdom
Phone: +44 (0) 1223 422102
envsales-UK@licor.com

LI-CORDistributor Network:
www.licor.com/env/distributors

Notice
The information in this document is subject to change without notice.

LI-COR MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
LI-COR shall not be held liable for errors contained herein or for incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another language without prior written consent of LI-COR,
Inc.

Microsoft, Windows, and Excel are registered trademarks of the Microsoft Corporation. Drierite is a registered trademark
of the W.A. Hammond Drierite Company. Sorbead and Orange CHAMELEON are registered trademarks of BASF
CATALYSTS LLC. Fetch is a registered trademark of Fetch Softworks LLC. Excelon Bev-a-line is a registered trademark of
Thermoplastic Processes, Inc. Propafilm is a trademark of Innovia Films. All other trademarks and registered trademarks
are property of their respective owners.

The LI-6800 is protected by patents 8,610,072, 8,692,202, and 8,910,506. Additional patents pending in the U.S. and other
countries.

Printing History
Copyright © 2019, LI-COR, Inc. All Rights Reserved
Publication Number: 977-18536
Created on: Tuesday, January 28, 2020.

ii

iii

Notes on Safety
This LI-COR product has been designed to be safe when operated in the manner described in this manual. The safety of
this product cannot be assured if the product is used in any other way than is specified in this manual. The product is
intended to be used by qualified personnel. Read this entire manual before using the product.

Equipment markings:

The product is marked with this symbol when it is necessary for you to refer to the manual or
accompanying documents in order to protect against injury or damage to the product.

The product is marked with this symbol when a hazardous voltage may be present.

The product is marked with this symbol if a Chassis Ground connection is required.

The product is marked with this symbol to indicate that a direct current (DC) power supply is
required.

WARNING Warnings must be followed carefully to avoid bodily injury.

CAUTION Cautions must be observed to avoid damage to your equipment.

Manual markings:

Warning Warnings must be followed carefully to avoid bodily injury.

Caution Cautions must be observed to avoid damage to your equipment.

Note Notes contain important information and useful tips on the operation of your equipment.

CE Marking:
This product is a CE-marked product. For conformity information, contact LI-COR Support at envsupport@licor.com.
Outside of the U.S., contact your local sales office or distributor.

California Proposition 65 Warning
WARNING: This product contains chemicals known to the State of California to cause cancer and birth defects or other
reproductive harm.

Federal Communications Commission Radio Interference Statement
WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed in accordance
with the instruction manual, may cause interference to radio communications. It has been tested and found to comply
with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC rules, which are designed to
provide a reasonable protection against such interference when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference in which case the user, at his own expense, will be required
to take whatever measures may be required to correct the interference.

Waste Electronic and Electrical Equipment (WEEE) Notice
This symbol indicates that the product is to be collected separately from unsorted municipal waste. The fol-
lowing applies to users in European countries: This product is designated for separate collection at an appro-
priate collection point. Do not dispose of as household waste. For more information, contact your local
distributor or the local authorities in charge of waste management.

iv

v

Contents

Section 1. Things you should know

Nomenclature and symbols 1-1
Python 1-2

If you don't know Python 1-2
Pay attention to the hints 1-3
If you do know Python 1-6

Consider using VNC 1-8

Section 2. Overview

Work flows 2-3
A tour 2-4

Start an existing BP 2-4
Build a new BP 2-6

Section 3. Some examples

Early morning FoFm 3-1
Variations on AutoLog 3-5

Timing 3-5
Log until sundown 3-7
Varying the log interval 3-10

Monitoring match mode 3-18
Record and replay a time series 3-20

Section 4. Response curves

Basic 4-1
Multiple controls 4-5
Higher dimensions 4-8
Variable stability wait times 4-14

Section 5. Using dialogs

Section 6. Screen reference

The Open/New screen 6-1
The Build screen 6-2
The Set screen 6-5
The Start screen 6-6
TheMonitor screen 6-8
Set screen interface tools 6-9

Simple objects 6-9
Control table 6-11
Data dictionary 6-12
Control dictionary 6-13
Status dictionary 6-13

Debug mode 6-14
Directory information 6-15
Saving BPs 6-17

Section 7. Step reference

- comment 7-1
ASSIGN 7-1

Value or expression 7-1
Data Dictionary value 7-3
Status Dictionary value 7-4
(Advanced) Topic and Key 7-5
(Advanced) XML value 7-9

AUTOENV 7-10
BREAK 7-13
CALL and DEFINE 7-13

Variable scope 7-13
Passing by value or reference 7-13

DIALOG 7-15
Grid items 7-16
_dlg variables 7-20
Things to consider 7-21

EXEC 7-22
Local vs global 7-22

GROUP 7-23
IF, ELSE IF, ELSE 7-24
LOG 7-25

Open file 7-25
Record remark 7-26
Record data 7-26
Close file 7-26

vi

ASUS
Underline

vii

LOOP 7-27
Count 7-27
Duration 7-28
List 7-29
File 7-29

PROPERTIES 7-31
RETURN 7-31
RUN 7-31
SETCONTROL 7-32
SHOW 7-33
TABLE 7-34

Structure of a TABLE variable 7-35
Custom executions 7-37

WAIT 7-37
Duration 7-38
Stability 7-38
Until 7-39
Event 7-41

WHILE 7-42

Appendix A. Control dictionary map

Appendix B. Status dictionary map

Appendix C. The list_utility module

viii

Section 1.
Things you should know

A Background Program (BP) is a collection of steps that will execute on the
LI-6800 console “in the background” to accomplish various tasks. These steps can
be put together with tools provided on the console’s user interface.

While BPs can do the same things as conventional AutoPrograms, they have three
significant advantages: 1) you can make your own BPs, 2) the scope of what can be
done via a BP exceeds what can be done with an AutoProgram, 3) any number of
BPs can be run simultaneously.

Some background information will help you be successful with background pro-
grams.

Nomenclature and symbols
We use some terminology and some highlights in this document that are explained
here.

l AutoProgram - The traditional LI-6800 method of running automated logging,
etc.

l BP - Background Program. The subject of this document
l Open, New, Start, etc. - Refers to a button on the interface.
l Open/New, Build, Set, Monitor - Refers to a tab label, or the screen associated

with that tab label.
l LOOP, SETCONTROL,WAIT - A BP step.
l LOOP [Duration] - A BP step of a particular sub-type.

1-1Using LI-6800 Background Programs

Section 1. Things you should know

Python
Even through BPs are Python files, you do not need to be a Python programmer to
build or run them, since the LI-6800 software provides a graphical user interface
for doing those tasks. However, knowing a little bit of Python syntax can be very
helpful if you wish to design your own BPs and take advantage of some powerful
options that are available. The BP interface contains places where you are invited to
type in values, expressions, variable names, etc., and even if you have no inclination
to become a programmer, some simple knowledge can be very useful to you. For
example, rather than entering in a list of setpoints for light intensity, you might
instead type in something like randomList(50,2000,15), which, when the pro-
gram runs, will generate a randomized list of 15 linearly spaced set points ranging
between 50 and 2000.

If you are not a programmer, the next section is for you.

If you don't know Python
The Python world consists of objects of various types, such as numbers, strings,
lists, and so on. You create and keep track of your objects by assigning them to vari-
ables. Consider these simple examples of Python assignments:

l a = 10 a points to an integer.
l ByeBye = 'this is a string' ByeBye points to a string.
l c66 = ["hello", 55, ByeBye] c66 points to a list containing a string, num-

ber, and string.
l dd = True dd points to a boolean.
l e_xy = ByeBye+" and " + c66[0] e_xy will be the string 'this is a string and

hello'.
l fff = 'file '+str(a) fff makes a string out of a number, so is = 'file 10'.
l hh = a >15 and dd hh will be False, since a is not greater than 15.

Variable names should start with a letter (a-z or A-Z), and can contain numbers
and underscores (_). Python is case sensitive. There are some keywords you should
avoid when creating variable names (Figure 1-1 on the facing page), but if you acci-
dentally use one, you will be notified when you run the program and you can fix it.

1-2 Using LI-6800 Background Programs

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

The same name rule also applies to functions. A function is a named collection of
instructions that can be invoked by using the name followed by a list of zero or
more arguments (information passed to the function). Examples:

l doSomething(a,5,c66) Calls the function doSomething, sending to it three
arguments.

l tryThis() Runs the function tryThis which takes no arguments.
l fff = 'file '+str(a) The function str() makes a string out of a number, so
fff becomes 'file 10' since a is 10.

Some functions only exist for a particular type of object. For those, we use a dot:
object.function(). For example, strings have a replace(x, y) function that replaces all
occurrences of x with y in that string. So, if the string pointed at by fff is 'file 10',
then

gg = fff.replace('file','cabinet') gg becomes 'cabinet 10'

Figure 1-1. Avoid using these as variable names.

Pay attention to the hints
The interface for configuring steps in a BP frequently contain hints that tell you
what is expected to configure that step. For example, the configuration interface for
the BP step ASSIGN, which lets you create a variable and assign it to an expression
(or other things), is shown in Figure 1-2 on the next page.

Section 1. Things you should know

1-3Pay attention to the hints

ASUS
Underline

Section 1. Things you should know

Figure 1-2. An example of an edit box requiring a variable name.

When an edit box has a hint with 'eval()' in it, it means that entry is going to be
passed to Python's eval() function when the program runs. This allows your entry
to be more complicated than, say, a numeric value. In the example above, the vari-
able is going to be assigned to whatever the eval() returns, regardless of type. In
other settings (Figure 1-3 below), a specific type is required, and that is reflected in
the hint. In the first example below, the entry is 10. It could just as easily be an
expression, like 8+2, or (if you have defined variables x and y) (x+y)/3.14159, or
anything that evaluates to something numeric.

Figure 1-3. Examples of edit boxes with eval() in the hint.

Lists: "Must eval() to a list" means to enter a sequence that is comma separated.
You can use [], or (), or leave them off:
[1,2,3] or (1,2,3) or 1,2,3

1-4 Using LI-6800 Background Programs

ASUS
Underline

In Python, [1,2,3] is a list that can be modified; otherwise, it is a tuple, a list that
cannot be modified. For lists you enter in a BP interface, that distinction is usually
not important. To enter a single valued list, use a trailing comma.
[1,] or (1,) or 1,

Trailing commas like this (1,2,3,) are always allowed, regardless of the size of the
list.

Strings: Take special note of the string example in Figure 1-3 on the previous page.
If you are being asked for a string, such as a color, or a file name, that will be
passed to eval(), and you enter
/home/licor/myfile.txt

eval() will treat that entry like a variable name and you'll see an error. To avoid
that, put single or double quotes around it.
'/home/licor/myfile.txt' or "/home/licor/myfile.txt"

The reason for this is to allow for variable names. For example, you might wish to
programmatically name a new file each time through a loop, so you enter
'/home/licor/myfile'+str(count)+'.txt'

where count is some variable you have defined, giving you a new file each time
through:
/home/licor/myfile0.txt
/home/licor/myfile1.txt
/home/licor/myfile2.txt

Failure to follow the guidance provided in the hint will usually result in an error
(Figure 1-4 on the next page).

Section 1. Things you should know

1-5Pay attention to the hints

ASUS
Underline

ASUS
Rectangle

ASUS
Rectangle

ASUS
Rectangle

Section 1. Things you should know

Figure 1-4. This is a one step BP, consisting of a WAIT step. Bad entries (left) and the res-
ulting output in the BP's run log (text at right).

If you do know Python
BP files are Python files (.py). A simple one from one of the upcoming examples is
shown in Listing 1-1 on the facing page.

from bpdefs import ASSIGN, LOOP, SETCONTROL, LOG, Nothing, CheckBox,
Text, Button, DropDown, RadioBtns, EditBox

steps=[
Assign a variable to an expression: ASSIGN('varname',
exp="expression" [,dlg=Nothing()])
ASSIGN("logint",

exp="lambda x: 30/(1+50*math.exp(-0.03*x))+0"),
Assign a variable to an expression: ASSIGN('varname',
exp="expression" [,dlg=Nothing()])
ASSIGN("test",

exp="lambda x: x if x >= 1 else 0"),
Loop through a list: LOOP(list=itemList [,var=varname]
[,mininc=''])
LOOP(list="1500,50,1500",

var="x",
steps=(

Set a control:

1-6 Using LI-6800 Background Programs

SETCONTROL('target', 'value', 'eval' [,opt_target=''])
SETCONTROL("Qin","x","float"),
Loop for a duration: LOOP(dur="float"

[,units='Seconds' Second|Minutes|Hours] [,var=''] [,mininc=''])
LOOP(dur="15",

units="Minutes",
var="t",
mininc="test(logint(t))",
steps=(

Log a data record:
LOG([avg='Default'] [,match='Default] [,flr='Default']
[flash='Default'])

LOG(avg="Off",
match="Off",
flr="0: Nothing"),

)
),

)
),
]
Listing 1-1. Listing of the file /home/licor/apps/examples/VariableLogInt.py.

A BP file contains one list, which is always named steps. Each item in steps is
created using a constructor, with class names such as ASSIGN, LOOP, LOG, etc.
The line before each constructor contains a comment, showing the options avail-
able for the version of constructor used.

The first thing to know is this: running a BP is not simply a matter of running the
.py file; rather, the .py file is compiled (eval()) to obtain a list of program steps
(steps). The thread that actually executes when a BP uses steps as data as it con-
structs itself.

A second thing to note is that because we are just constructing data in a list, vari-
ables and expressions have to exist at this stage as strings, sometimes even doubly-
quoted strings. The first parameter in ASSIGN, for example, is destined to become a
Python variable (but not yet), so at this stage, it is a quoted string. Similarly, what
will be the object assigned to that variable also starts out as a string. In the two
ASSIGNs above, the assigned objects will become lambda expressions. In summary,
you have to keep in mind that you are writing code that will be sent to a Python's
eval() or exec() statements twice: once to build the step, then later when the step
processes its parameters.

Section 1. Things you should know

1-7If you do know Python

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Highlight

ASUS
Highlight

Section 1. Things you should know

Because BP files are .py files, they can be written and/or edited outside of the LI-
6800 console's user interface using any text editor. Ideally, of course, you should
use an editor designed for Python, to eliminate syntax errors in the editing stage.

Consider using VNC
The touch screen keyboard on the LI-6800 console does not lend itself well to typ-
ing long expressions and names that may be needed when developing BPs.

Consider connecting to the LI-6800 with a virtual network computing (VNC)
viewer client when doing BP development. Clients are available for a wide range of
platforms from https://www.realvnc.com/en/connect/download/viewer/

Using a VNC client on your computer allows you to use your computer's keyboard
to enter those long expressions and names.

One hint for doing this is in Figure 1-5 below. When the LI-6800 keyboard (or
keypad) appears for an entry, the VNC client keyboard will not immediately be
“activated”. To do this, you must click in the keypad entry area somewhere to the left
of the entry's last character. (If the entry area is empty, you may have first click on a
couple of keypad buttons to put some characters there, then click to the left of the
last one.)

Figure 1-5. Click in the text to activate the VNC client keyboard.

1-8 Using LI-6800 Background Programs

https://www.realvnc.com/en/connect/download/viewer/

Section 2.
Overview

As mentioned, a Background Program (BP) is a collection of steps that will execute
on the LI-6800 console "in the background" to accomplish various tasks. These
steps can be put together by the user with tools provided on the console's user inter-
face.

Figure 2-1 below illustrates how to access the BP screens.

Figure 2-1. The Open/New tab of the Background Program interface.

2-1Using LI-6800 Background Programs

Section 2. Overview

The BP environment has five tabs along the bottom: Open/New, Build, Set, Start,
and Monitor.

Open/New - Load BPs from the file system for running or editing.

Build - Assemble a list of program steps fom the menu on the left. Steps can be re-
ordered, moved around, etc.

Set - Each program step has associated parameters that can be edited and adjusted
as needed.

Start - At any point, you can try out all or part of your program. This screen shows
what step is being executed, and shows messages and output generated by the BP as
it runs. You can execute your program in real time or step by step.

Monitor - Similar to the Start screen, but for any running BP.

2-2 Using LI-6800 Background Programs

ASUS
Underline

Work flows

See The Open/New
screen on page 6-1

See The Build screen on
page 6-2

See The Set screen on
page 6-5

See The Start screen on
page 6-6

See The Monitor screen
on page 6-8

Figure 2-2. The BP workflows.

Section 2. Overview

2-3Work flows

Section 2. Overview

A tour
For this introductory tour, we will launch an existing BP and watch it a bit, then -
while the first BP continues to run - we will build a second BP from scratch, and
run it.

Start an existing BP
Tap Program Builder in the AutoProgram page (top of Figure 2-1 on page 2-1). This
will bring up the BP screens. Follow the steps in Figure 2-4 on the facing page. (You
don’t need to have a log file open for this demo.)

Figure 2-3. Launching the CO2 response BP, which has an opening dialog.

2-4 Using LI-6800 Background Programs

The BPs in the apps/basic directory all have opening dialogs, allowing settings to be
modified from the default. Tap Continue and you can then monitor the progress of
the BP in the Monitor tab (Figure 2-4 below).

Figure 2-4. Launching and monitoring a BP.

Use Trigger to skip waits, try out Pause and Resume. Don’t tap Cancel - we’ll keep
this BP running while we continue the tour, building a simple BP from scratch.

Section 2. Overview

2-5Start an existing BP

ASUS
Underline

Section 2. Overview

Build a new BP
Let’s make a simple program to do the following: 1) Turn on the chamber fan, set
it to 12,000 rpm. 2) Wait 30 seconds. 3) Turn the fan off.

To do this, following the steps:

1 Create an empty program.

Select the Open/New tab (lower left) and tap the New button (Figure 2-5 below).

Figure 2-5. Preparing the build a BP from scratch.

2-6 Using LI-6800 Background Programs

2 Add four steps (PROPERTIES, SETCONTROL,WAIT, and SETCONTROL) to the program.

To add a step, select it in the left-hand window, then tap Insert→ to put a copy of it
on the right. To arrange steps in the right window, use ↓ and ↑ at the bottom of
the right view.

Figure 2-6. Building a simple program.
3 Now tap Set.

This is the screen in which we configure the steps to do what we need. Our 4-step
BP is on the left; tap a step to select it. On the right is the configuration interface
for the selected BP step.

Figure 2-7. Setting the parameters for each step in the BP.

Section 2. Overview

2-7Build a new BP

Section 2. Overview

4 Select each BP step, and configure it as shown in Figure 2-8 below.

As you make edits on the right, the step summary on the left will change to reflect
the changes.

Figure 2-8. Setting the parameters for each step in the BP.
The PROPERTIES step is there so we can turn on “verbosity”, which means every
step will produce some output in the run log when we run it.

2-8 Using LI-6800 Background Programs

5 Now tap Start and we will try out the program.

Figure 2-9. The Start screen allows you to test your program.
6 When you start running the program (tap Start), you should see things start to appear in the

right-hand run log (Figure 2-10 below).

Figure 2-10. The step currently being executed in the program is highlighted in the left list.

Section 2. Overview

2-9Build a new BP

Section 2. Overview

7 TapMonitor.

In our tour we should now have two BPs running (at least for the 30 seconds the
latest one has the fan on), so we can view both in the Monitor (Figure 2-11 below).

Figure 2-11. Multiple BPs running concurrently.
When a process ends (as our PID=0 will after 30 seconds), it will disappear from
the monitor screen. If it was the selected BP when it ended, its run log will remain
visible until you selected a different process to view.

2-10 Using LI-6800 Background Programs

ASUS
Underline

8 Now tap the remaining process that we launched at the start of the tour, and see in the run log
what it has been doing (Figure 2-12 below).

Figure 2-12. The program we first launched has been busy while we were the second pro-
gram.

9 Tap Cancel to end that program, and our tour.

Section 2. Overview

2-11Build a new BP

Section 2. Overview

2-12 Using LI-6800 Background Programs

Section 3.
Some examples

In this section, we present some examples that show how to carry out a meas-
urement with a background program.

Early morning FoFm
Suppose you need to make a dark adapted fluorescence reading on a leaf the first
thing in the morning, but don’t want to be there to do it. What you would rather
do is start a BP the day before and put the instrument to sleep, leaving this BP run-
ning to do what needs to be done in the morning.

(A finished version of this program can be found in
/home/licor/apps/examples/EarlyMorningFo.py). Specifically, we need the pro-
gram to perform the following steps (each is followed by the actual BP step):

1 Wait until 5 a.m. (WAIT).

2 Get the instrument out of sleep mode (SETCONTROL).

3 Wait a few minutes to let things warm up (WAIT).

4 Open a log file (LOG).

5 Log, getting an FoFm (LOG).

6 Close the file (LOG).

7 Go back to sleep (SETCONTROL).

3-1Using LI-6800 Background Programs

Section 3. Some examples

To assemble this BP, do the following:

1 Tap the Open/New tab, thenNew.

This will take you to the Build tab, with an empty list.
2 Insert a PROPERTIES.

Tap on PROPERTIES in the Steps section on the left, then tap Insert→ .
3 Insert aWAIT below it (with PROPERTIES highlighted on the right, andWAIT highlighted on

the left, tap Insert→).

This will become the item that waits until dawn.
4 Continue, until the list looks as shown in Figure 3-1 below.

Figure 3-1. The program steps necessary - and not yet configured - for the early morning
FoFm example.

5 Tap on the Set tab, and configure each step according to Figure 3-2 on the facing page.

3-2 Using LI-6800 Background Programs

Figure 3-2. How each step is to be configured for the early morning FoFm example.

Note that we are doing three different things with LOG: open, write to, and close a
file.

Section 3. Some examples

3-3Section 3. Some examples

Section 3. Some examples

Test the program by tapping the Start tab, and then tap the Start button. Imme-
diately we are waiting until 5:00 the next morning. Tap Trigger if you don’t want to
wait that long.

Figure 3-3. Test running the program.

3-4 Using LI-6800 Background Programs

Variations on AutoLog
Autologging (logging at regular intervals for some fixed amount of time) is very
simple with a BP, but there are some useful variations on this theme that are good
to know, including

l Log events can take variable amounts of time (matching, fluorometry, etc.), so
how can we get precise log intervals?

l What if we want the log interval to change with time?
l What if we want to start or stop based on some environmental condition, rather

than just the clock?

Timing
Let’s start with a basic autologging program (Figure 3-4 below) which does a LOOP
lasting 10 minutes (autolog duration) that contains a LOG and a WAIT (the log-
ging interval).

Figure 3-4. A simple autolog program.

A potential shortcoming of this program is that it does not account for how long
the LOG takes, which might range from about half a second to many seconds,
depending on matching, fluorometer actions, etc.. If you were trying to log every 1
or 2 seconds, then this program would be a little frustrating because the log inter-
val might often be longer than that. We could explicitly time the log in our

Section 3. Some examples

3-5Variations on AutoLog

ASUS
Underline

ASUS
Underline

ASUS
Highlight

ASUS
Highlight

Section 3. Some examples

program and adjust the wait time accordingly but LOOP provides an easier way to
accomplish that (Figure 3-5 below).

Figure 3-5. A more precise autolog using LOOP’s built-in timer.

Let’s see this program in action. With a log file open, and a PROPERTIES statement
added to get the actual time sent to the WAIT statements, we get Figure 3-6 below.

Figure 3-6. Testing the adjustable wait.

There is yet a third method, and it is even easier (Figure 3-7 on the facing page).
LOOP (and WHILE) have a minimum time per cycle parameter that can be spe-
cified to regulate how often the loop repeats. At the end of the loop, it does an
implicit wait if necessary to enforce that timing so we can get rig of our WAIT state-
ment.

3-6 Using LI-6800 Background Programs

ASUS
Underline

Figure 3-7. Replace the WAIT with the minimum interval specifier.

Another advantage of this last method is that both parameters for the autolog (dur-
ation and interval) are contained in the LOOP settings.

Log until sundown
Now that we know how to do an autolog program, let’s try another variation, this
time adjusting the duration. Instead of a fixed time duration, let’s make it log until
some environmental condition is met. Specifically, we’ll make a program to log a
data record every 10 minutes from the time we start the program until the sun goes
down. We’ll assume there is an external quantum sensor measuring light, and
define sundown as when the PAR reading goes below 5 µmol m−2 s−1.

(A finished version of this program can be found in
/home/licor/apps/examples/LogTilDark.py).

Section 3. Some examples

3-7Log until sundown

Section 3. Some examples

Figure 3-8. Configuring the program to log until dark.

Now let’s test this program, making sure there is enough light on the external
quantum sensor so it will act like daytime. To simulate sunset after a test loop or
two, simply cover the sensor.

3-8 Using LI-6800 Background Programs

Figure 3-9. Configuring LogTilDark.

Running this program with Verbose=False (in the PROPERTIES step) will decrease
the output to just the start and stop message, and the log events in between. This is
how a repetitive program like this should normally be run.

Section 3. Some examples

3-9Log until sundown

Section 3. Some examples

Varying the log interval
When recording the response of a leaf to an abrupt environmental change (e.g.,
light level), there might be multiple time scales you want to capture, from the very
rapid (photosynthesis) to the very slow (stomatal conductance). While one option
might be to log as fast as possible for a long time, a more efficient method is to
start logging frequently and slow down as time goes by.

BPs provide a couple of ways to do that.

One method is to chain together a series of autoprogram loops, each with differing
durations and wait intervals, such as log every 1 second for 1 minute, then every 5
seconds for 1 minute, then every 10 seconds for 3 minutes, then 60 seconds for 10
minutes.

Let’s assemble a BP that does this, and in the process learn something about BP
functions (CALL and DEFINE):

1 Tap the Open/New tab, thenNew.

This will take you to the Build Sequence tab, with an empty list.
2 Add a CALL (With CALL highlighted on the left, and tap Insert→ .)

3 Add the functionDEFINE AutoLog (With CALL highlighted on the right, scroll down to the
Library DEFINEs section of the box on the left, tap onDefine AutoLog, and tap Insert→ .)

Figure 3-10. The first steps in building a four stage autolog program.

3-10 Using LI-6800 Background Programs

ASUS
Highlight

ASUS
Highlight

4 Change to the Set screen, and configure the CALL to call the correct subroutine Figure 3-11
below.

Figure 3-11. Configuring the first call to AutoLog.

5 Now change back to Build, highlight the CALL AutoLog on the right. Tap Copy, then, Paste,
Paste, and Paste.

6 Now change back to Set, and adjust the configurations on the three new AutoLog CALLs.

Section 3. Some examples

3-11Varying the log interval

Section 3. Some examples

Figure 3-12. Adding the other CALLs.

Up to now, we haven’t examined what a DEFINE looks like in a BP. Let’s do that
now, and see what is inside the AutoLog DEFINE (Figure 3-13 below).

The parameters for a DEFINE consist of a name, a parameter count, and names for
each parameter. You can also specify if each parameter is passed in by value or ref-
erence (Step reference on page 7-1).

Figure 3-13. How the AutoLog DEFINE is configured.

3-12 Using LI-6800 Background Programs

If you are wondering how the SHOW is printing the run log message you see in
Figure 3-14 below, it uses the built-in function format() for building a formatted
string.

Because this AutoLog DEFINE is in the library, and we haven’t changed anything
about the copy we added to our BP, we don’t really need it: We can delete it from
our BP and the program will still work just fine.

Figure 3-14. Run log for 4-step BP. Since the AutoLog DEFINE is in the library, it needn’t
be physically present in the BP.

There is another approach to varying log intervals after an event: make a function
that provides the log interval as a function of time after an event. Lets say we want

Section 3. Some examples

3-13Varying the log interval

Section 3. Some examples

a logging interval that looks something like Figure 3-15 below, which would be
provided by a logistical expression such as

3-1

Figure 3-15. A prospective log interval function.

Implementing a function like this is very easy in a BP (Figure 3-16 on the facing
page). Creating a simple function is just like assigning a variable, but by preceding
the definition with lambda x: (this is a Python construct), we declare logint to be a
single parameter function, with x as the independent variable. The only thing in
the loop is a SHOW statement to print out elapsed time and the computed loop trig-
ger interval (formatted to show 3 significant digits).

3-14 Using LI-6800 Background Programs

Figure 3-16. Program to test using a continuous function for log interval.

When run, this program produces the output as in Figure 3-17 below. The loop
starts out running about every 0.5 s, and increases from there.

Figure 3-17. Testing the timing.

Section 3. Some examples

3-15Varying the log interval

Section 3. Some examples

At this point, we need to interject a bit of reality: the LI-6800 gets new data sets at 2
Hz, so it makes no sense trying to log any faster, and even if you could, you prob-
ably do not want to log two identical records. What we need, when we are logging
rapidly, is a way to synchronize the log interval to when data is available.

Fortunately, there is a way to do that, and that is to set the ‘minimum time per
cycle’ parameter in a LOOP to 0. Then, instead of waiting for the clock to tell it
when to launch another cycle, it waits for a new data set to be ready.

Let’s adapt the program to use 0 for any logint(t) that computes to less than 1
second (Figure 3-7 on page 3-7).

Figure 3-18. Modifications to wait for data for log intervals <1 second.

3-16 Using LI-6800 Background Programs

ASUS
Highlight

Let’s expand this program to do a couple of large step changes in light, and track
the response with this timing function. The program is illustrated in Figure 3-19
below, and is available at /home/licor/apps/examples/VariableLogInt.py.

Figure 3-19. Program to log at increasing intervals following an abrupt light change.

Section 3. Some examples

3-17Varying the log interval

Section 3. Some examples

Monitoring match mode
Suppose you are measuring isotopes in the air stream that is coming from the
sample cell gas analyzer. You will need to know when the system is in match mode
to know when to ignore that measurement (match mode puts reference air to both
cells). A simple BP can monitor the system, and set a spare DAC channel to signal
when match mode is active.

Figure 3-20. A simple program to signal when a match is active.

3-18 Using LI-6800 Background Programs

Figure 3-21. Listing of /home/licor/apps/utilities/MatchWatcher.py.

Section 3. Some examples

3-19Monitoring match mode

Section 3. Some examples

Record and replay a time series
This example has two parts. In Part 1, the objective is to record a time series of
light intensity to a file. This would be useful, for example, in an understory with
passing sunflecks. In Part 2, use that file to drive a light source through the same
time series of light intensities.

For the data recording part, we won’t use normal logging, as we just need a time
stamp and light sensor value. A BP can do this for us easily, and Figure 3-22 below
illustrates a test version, since it outputs to the run log, and only runs for 10
seconds.

Figure 3-22. Program to record a light time series.

A discussion of the program steps follows:

1 Use ASSIGN to open a file (using the Python expression for this), assigning f to the file object.
2 Use ASSIGN to track the external quantum sensor with a variable named q.
3 Write a header (“Time,Light”) to the file using a Python print statement inside of an EXEC step.

Note the reference to the file (file=f) in the print.
4 Use ASSIGN to make a variable hhmmss that captures current time in hh:mm:ss format. (The

Python datetime module is available and is used for this.
5 Use ASSIGN to build the observation line for the file, held in variable line.
6 Use SHOW puts the line in the run log. (Strictly for debugging - we’ll get rid of this in the final

version.)

7 Write the line to the file using print(), putting it all in an EXEC statement.

8 When the loop is done, close the file with f.close(), inside an EXEC.

3-20 Using LI-6800 Background Programs

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Highlight

ASUS
Highlight

The real version of this program is in /home/licor/apps/examples/GetTimeSer-

ies.py, minus the SHOW statement, and set to run for 1 hour.

Variations. For higher speed data, set the system averaging time to 0 (add a
SETCONTROL before the LOOP, and target it to SysConst:AvgTime, which you’ll
find under Constants, then System in the Control Dictionary), and make the time/-
cycle in the LOOP equal to 0 (this triggers the cycle each time new data is ready.)

Part 2 is making a BP to use this file. All that is required is 2 steps (Figure 3-23
below). The program is also available on /home/licor/apps/examples/Run-

TimeSeries.py.

Figure 3-23. Program to drive the light source according to a time series file.

Question: How would you modify this program to log the leaf response while it
replays the time series?

The answer: don’t even try. Instead, run this program to drive the light source, and
use a separate, concurrent autologging program (BP or conventional AutoProgram)

Section 3. Some examples

3-21Record and replay a time series

Section 3. Some examples

to do the logging. Trying to do both is easy with separate programs, but combining
them into one is more difficult. This is the power of BPs - you can split complicated
tasks into simple, independent pieces.

Variations on that theme: You could launch both the autolog and the light control
programs from a third BP (use the RUN keyword and the program’s file name), or
you could launch the autolog BP from the light control BP, or vice versa.

Those are exercises left to the reader.

3-22 Using LI-6800 Background Programs

Section 4.
Response curves

In principal, generating a response curve consists of the following repetitive pat-
tern: 1) set environmental conditions, 2) wait for stability, 3) log data.

BPs provide a fair amount of flexibility for accomplishing these tasks: Control set-
points can be hand-entered, read from a file, generated from an algorithm, and so
on. Wait times can be fixed, or made to adapt to conditions.

The following sections illustrate some response curve options available with BPs.

Basic
A simple BP to generate a response curve for CO2 can be found in the Library
GROUPS source, and is shown in Figure 4-1 below. To change setpoints, edit the
LOOP step, and to change target, edit the SETCONTROL step.

Figure 4-1. Single variable response using LOOP [List].

4-1Using LI-6800 Background Programs

Section 4. Response curves

Since the list entry in LOOP is evaluated, you can use Python expressions there. For
example, if you wanted integer setpoints every 100 ppm from 100 to 1000, you
could make use of the range() method, which takes integer arguments of start, stop,
and step.

which would (at run time) make the list
[100, 150, 200, 250, ..., 1000]

Another option is shown in Figure 4-2 below, where we've added an EXEC step to
make available some list generating utility methods available in the module list util-
ity.py). We use that capability to generate a floating point setpoint list given simply
a start value, stop value, and number of desired points.

Figure 4-2. Adding linearList capability.

If you want randomized values, use randomList() instead of linearList().

Expression Result

linearList(1,10,4) [1.0, 4.0, 7.0, 10.0]
linearList(5, -5, 6) [5.0, 3.0, 1.0, -3.0, -5.0]
randomList(5, -5, 11) [4.0, 3.0, -1.0, -3.0, 2.0, 1.0, -2.0, -4.0, -5.0, 0.0, 5.0]

Table 4-1. Examples of randomList(), and linearList().

4-2 Using LI-6800 Background Programs

ASUS
Highlight

ASUS
Highlight

ASUS
Underline

The sample program /home/licor/apps/basic/GenericResponse.py (Figure 4-3
below) illustrates the use of a TABLE, which makes it easy to coordinate targets and
setpoints. Table entries do not by default pass through eval() (i.e., no expressions,
no variables), so set points have to be explicitly entered.

Figure 4-3. The program /home/licor/apps/basic/GenericResponse.py.

Section 4. Response curves

4-3Section 4. Response curves

Section 4. Response curves

The GenericResponse.py program does support an opening dialog (Figure 4-4
below), from which you can also edit the table.

Figure 4-4. The opening dialog for /home/licor/apps/basic/GenericResponse.py.

4-4 Using LI-6800 Background Programs

Multiple controls
How to change multiple controls in a response loop? For example, how could you
make a light response with the color becoming more red as intensity drops?

One method is to use the control table interface (such as with /home/licor/apps/-

basic/GenericResponse.py), and make the table look something like this (Figure
4-5 below):

Figure 4-5 . Light curve with increasing fraction of red as light drops.

Another method is illustrated by the example program
/home/licor/apps/examples/LightColorCurve.py (Figure 4-6 on the next page),
which uses programmatically determined set points for intensity and color.

Section 4. Response curves

4-5Multiple controls

Section 4. Response curves

Figure 4-6. Programming color, from /home/licor/apps/examples/LightCo-

lorCurve.py.

4-6 Using LI-6800 Background Programs

If we test run this program in verbose mode, we can see the values it picks for the
each setpoint (Figure 4-7 below).

Figure 4-7. Test running /home/licor/apps/examples/LightColorCurve.py.

Section 4. Response curves

4-7Multiple controls

Section 4. Response curves

Higher dimensions
Suppose you want to measure a response surface instead of a curve? For example,
photosynthesis, conductance, etc. as a function of light and CO2. With just 2 inde-
pendent variables, you could do nested control loops, as illustrated by ../-
basic/NestedResponse, with a measurement strategy as illustrated by Figure 4-8
below. Basically, we are measuring a light curve (lot of points) at a few different
CO2 concentrations.

Figure 4-8. Measuring a response surface with 12 light setpoints at 4 different CO2 set
points. 48 total points.

This would provide four high resolution light curves, and 12 very crude CO2
response curves. If you want to balance it out, you could work backwards: how
much time do you want to spend maximum (say 2 hours), divide it by the average
time to equilibrate at each point (say 5 minutes) to get the 24 total points, take a
square root (≈ 5), leaving you with 5 light values and 5 CO2 values. Not very sat-
isfying.

Well, why not use 12 light and 12 CO2 points, and just one loop, setting both each
time (Figure 4-9 on the facing page)? That way, we could be done in 12 × 5 = 60
minutes.

4-8 Using LI-6800 Background Programs

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

Figure 4-9. Trying to combine responses leaves you with a very poor sampling of the surface.

Plotting out that strategy (Figure 4-9 above) makes it clear why it is not helpful:
every point we get is on a unique light or CO2 curve, leaving us with little or no
knowledge of what that response surface actually looks like.

But, suppose we use those 12 pairs of points, and randomize the order so that we
have a very low correlation between them (Figure 4-10 below).

Figure 4-10. Randomizing the order of the Q and CO2 setpoints to minimize the cor-
relation between them greatly improves the chances of determining the response surface.

Section 4. Response curves

4-9Higher dimensions

ASUS
Highlight

Section 4. Response curves

Now we are sampling across the light CO2 space, and have a chance of getting a
reasonable estimate of what the surface above it might be like.

This approach is easy to do with a BP. Let’s start building a program to try this out
(Figure 4-11 below). We add the list list_utility.py module (an EXEC step), then
make two lists of 12 evenly spaced setpoints: q (for light) from 50 to 1500, and c
(for CO2) from 50 to 1000). Another EXEC passes setpoint lists to makeOrtho() to
shuffle them, getting back a list of lists, which we put into the original variables.
We use SHOW to look at the values.

Figure 4-11. Creating orthogonal setpoint lists in a test program using the makeOrtho()
function from the list_utility module.

Now all we need is to add a LOOP with SETCONTROLs,WAIT, and LOG, and we
have the program /home/licor/apps/examples/OrthoLightCO2.py (Figure 4-12 on the
facing page).

4-10 Using LI-6800 Background Programs

ASUS
Underline

ASUS
Underline

ASUS
Underline

Figure 4-12. A program to measure a CO2 and light response surface, using orthogonal set-
points.

There are two optional parameters provided by makeOrtho() (see The list_utility
module on page 10-1), that are illustrated in the following example. Suppose you
want three independent variables: light, CO2, and temperature. Making big jumps
in CO2 or light is not a problem (other than longer leaf equilibration times), but
with temperature, you would prefer to make the changes in a monotonic manner
as much as possible just to minimize system equilibration time. How can that be
done?

An example is /home/licor/apps/examples/OrthoTempLightCO2.py (Figure 4-13
on the next page).

Section 4. Response curves

4-11Higher dimensions

Section 4. Response curves

Figure 4-13. A program to measure a temperature, CO2, and light response surface using
orthogonal setpoints.

Changes to the previous program are:

(line 3, ASSIGN) - Added a variable (temp) that holds 12 temperature set points
from 15 to 30.

(line 6, EXEC) - Added temp and some optional parameters to the makeOrtho() call,
so it looks like this"

makeOrtho((temp,q,c), lock index=0, out-
file='/home/licor/logs/ortho3_values.txt')

lock_index=0 tells makeOrtho() to not randomize the first (0th) list, which is temp.

outfile='/home/licor/logs/ortho3_values.txt' instructs makeOrtho() to also
write its results to a file, so we can view or use these same setpoints later (Listing 4-1
on the facing page).

corr_coeff= 0.076648340643
15.0 1105.0 568.0
16.36 182.0 827.0
17.73 1368.0 741.0
19.09 50.0 223.0
20.45 1500.0 309.0

4-12 Using LI-6800 Background Programs

ASUS
Highlight

21.82 314.0 482.0
23.18 445.0 136.0
24.55 973.0 1000.0
25.91 841.0 50.0
27.27 709.0 655.0
28.64 577.0 914.0
30.0 1236.0 395.0

Listing 4-1. Listing of /home/licor/logs/ortho3_values.txt.

(line 7, SHOW) - Added temp to the list.

(line 9, SETCONTROL) - Set lef temperature to the ith value of temp.

Section 4. Response curves

4-13Higher dimensions

ASUS
Underline

Section 4. Response curves

Variable stability wait times
Suppose you wish to do a light curve at a few different CO2 concentrations by nes-
ted loops, with an outer loop that changes CO2, and inner loop that changes light
(the program /home/licor/apps/examples/Light_CO2_autofile.py will do
this, putting each light curve in its own log file.) An important consideration with
this method is the wait time for the first light value needs to be longer than nor-
mal, since the CO2 will have just changed, and the light will have had a big
change from the last value of the previous light curve. A method of accom-
modating that is shown in (Figure 4-14 below).

Figure 4-14. Adding wait time variables to a table.

4-14 Using LI-6800 Background Programs

ASUS
Underline

The equivalent to Figure 4-14 on the previous page without using TABLE could be
done as illustrated in Figure 4-15 on the next page. Here we take advantage of being
able to easily generate set points (linearList()). minWait is a normal minimum wait
time, and firstWait is the time to use on the first pass through the light curve each
time. Maximum wait times are always 2 times the minimum.

Section 4. Response curves

4-15Variable stability wait times

Section 4. Response curves

Figure 4-15. Nest control loop with computed wait times.

4-16 Using LI-6800 Background Programs

Section 5.
Using dialogs

It can be very helpful to put a user interface on a BP to guide the user, especially
when the user is not the program designer. Consider, for example, a simple BP for
doing a light response curve (Figure 5-1 below).

Figure 5-1. A good candidate for a DIALOG front end.

This program has three parameters (starting setpoint, ending setpoint, and incre-
ment). If someone (not the designer) wants to use this program but needs to
modify the settings, they have to do so in the BP editing environment, where - if
they aren't sure of what they are doing - they could inadvertently render the pro-
gram unworkable. It would be better if the program simply presented the user with
something like Figure 5-2 on the next page.

5-1Using LI-6800 Background Programs

ASUS
Highlight

Section 5. Using dialogs

Figure 5-2. A dialog front-end for the light response program.

Happily, setting up such a dialog for a BP is fairly simple, since there is a DIALOG
step that does most of the work for you. If there are variables in your BP you want
to edit, or if you want to let the user control the program's actions via buttons or
checkboxes, there will be a few code additions needed to handle that. In general,
however, there are three basic steps:

1 Insert a DIALOG step in the BP at an appropriate place in the execution flow that you want the
dialog to appear.

2 If the dialog allows for editing program variables, revisit the ASSIGN steps for those variables
and fill in the dialog-related information for whatever interface you choose.

3 If your program flow is going to depend on what button was pressed, or the state of edited vari-
ables, add that code.

How to make the BP in Figure 5-1 on the previous page produce the dialog in Figure
5-2 above is shown in Figure 5-3 on the facing page, with the program additions
shown in the red box. We put the DIALOG step after count is assigned, but before
setpoints is computed, since that uses the potentially edited values. We also are
handling the Cancel button by IF and RETURN steps. To make start, stop, and count
appear in the dialog, they are a) listed in Grid items in the DIALOG setup, and b)
they have interfaces specified in their ASSIGN statements.

5-2 Using LI-6800 Background Programs

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

Figure 5-3. The LinearLightResponse program uses a DIALOG to configure itself.

An exercise, let's add a "dark adapt" feature to this program. It's an on/off sort of
thing, so would lend itself well to a check box in the dialog and a boolean variable
in the program. Figure 5-4 on the next page illustrates one way to accomplish this:

Section 5. Using dialogs

5-3Section 5. Using dialogs

Section 5. Using dialogs

1 Add a variable dark (upper green box), and ASSIGN it to False. Give it a check box interface.

2 Add dark to the list of editable items inDIALOG. Put it last if you want it at the bottom of the
edit items in the dialog.

3 Add some code (lower green box) to perform a dark adaption if dark has been set to True. (We're
ignoring the details of what exactly is in the Dark Adapt GROUP in this example).

Figure 5-4. Adding a dark adapt option to the opening dialog.

For more on using DIALOG, see DIALOG on page 7-15.

5-4 Using LI-6800 Background Programs

Section 6.
Screen reference

This section explains the various screens associated with building and running BPs,
and related details.

The Open/New screen
Open/New is where you can launch a BP, load one and make changes, or start
building one from scratch.

Figure 6-1. The Open/New screen lets you pick a BP, or start a new one. See Directory
information on page 6-15 for information about folders.

6-1Using LI-6800 Background Programs

Section 6. Screen reference

l New BP clears BP steps, and takes you to the Build screen.
l Open BP reads BP steps from the selected file and displays them in the Build

screen.
l Start launches the selected file. To view its progress, tap Monitor.

The Build screen
The Build screen is where you can add steps from the list on the left to a BP on the
right, arranging them to build up the basic structure of your program. See Table
6-1 on the facing page for a summary of the steps; more details on each step is avail-
able in Step reference on page 7-1. Pre-configured step collections (of type DEFINE
and GROUP) are also available (Table 6-2 on page 6-4).

Figure 6-2. The Build screen for adding, removing, and rearranging steps in a program.

6-2 Using LI-6800 Background Programs

l Insert→ copies selected item on left to below highlighted item on right.
l Child→ appends selected item on left to list of children of highlighted parent

item on right.
l ↓and ↑moves selected step (and all contained children, if any) up or down.
l → moves selected step to the bottom of the parent above it.
l ← moves selected step out its parent and puts it below the parent.
l Cut deletes the selected step, and puts it in the clipboard.
l Copy copies the selected step to the clipboard.
l Paste inserts a copy of the clipboard into the program list.
l Delete deletes the selected step from the program list.
l Clear all clears the contents of the program list, changes name to

/home/licor/apps/unnamed.

Group Step Description

Statements # A comment line, for making a BP more human-
readable.

ASSIGN Create a local variable. Can be of any Python type.
AUTOENV Provides a method of configuring, starting, stopping

any of the six AutoEnvs.
DIALOG Displays a dialog box on the console for user

interactions.
EXEC Performs a Python exec() call on the string, or the

specified file name.
LOG Log file control: open, close, add data, add a remark.
PROPERTIES Set verbosity, pause. Other properties to be added in

the future.
RUN Launch a BP that is stored in the file system.
SETCONTROL Sets a control or constant.
SHOW Outputs information to the run log
TABLE A control table. Columns are set points and rows are

controls.
WAIT Wait for some duration, or for stability, or a specific

date and time

Table 6-1. The building blocks of a BP.

Section 6. Screen reference

6-3The Build screen

ASUS
Highlight

Section 6. Screen reference

Group Step Description

Prog Flow
Control

BREAK Exits a LOOP orWHILE.
CALL Calls a subroutine (DEFINE).
DEFINE Define a subroutine.
GROUP Contains a collection of steps.
IF Conditional branching. Has ELSE IF and ELSE options.
LOOP Loops over child program steps.
RETURN Exits a subroutine or the main program.
WHILE Loops while a condition is True.

Table 6-1. The building blocks of a BP. (...continued)

Group Name Description

Library
DEFINEs

AutoLog Logs at regular intervals for some fixed duration.
BalanceFlow Adjusts flow rate until sample and reference exhaust

flows balance (for the current pump speed).
ChamberInfo Gets model number and serial number for present

chamber.
ChamberStatus Sets the passed in variable to True if sample cell flow is

very low.
RampBlue Ramps the fraction of blue of the source color between

two end points over some time period.
RampLight Ramps the light intensity of the source between two end

points over some time period.
Library
GROUPs

AutoLog Logs for a fixed time at regular intervals.
CO2 Response A simple CO2 response loop.
Dark Adapt If a fluorometer is present, does a typical dark adapt

routine.
Dialog Example Template for using a dialog.
Dialog: Buttons
only

Template for a simple dialog.

Light Response Does a simple light curve.
Time examples Useful time functions.
Trigger User
Prompts

Displays the user-prompts page.

Wake if sleeping Wakes the instrument if in sleep or standby

Table 6-2. Pre-configured collections that can be added to a BP.

6-4 Using LI-6800 Background Programs

ASUS
Highlight

ASUS
Highlight

The Set screen
Each program step has attributes that define its behavior. WAIT, for example, can
suspend the BP's operation for a fixed time duration, or until stability to be
achieved, or until a specific time of day.

Figure 6-3. Use the Set screen to configure individual program steps. See Saving BPs on
page 6-17 for more details.

See Set screen interface tools on page 6-9 for a discussion of the various interface tools
that might appear on the right side of the Set screen.

In this document, we illustrate how to configure BPs in the Set screen as in Figure
6-4 on the next page a listing on the left, and one or more setting screens (the right
hand side of the Set screen) on the right.

Section 6. Screen reference

6-5The Set screen

Section 6. Screen reference

Figure 6-4. An example of how this documentation represents how to set the parameters for
a step in a BP.

The Start screen
The Start screen provides a place to test run the BP being developed.

Figure 6-5. Running a BP.

Cancel stops the program, Pause pauses the program (enabling Resume, which
will start it running again), Trigger terminates a WAIT.

If you Trigger when a program is paused, the program will remain in a paused
state, but go on to the next step. It also will output any messages about that step
even if the Verbosity is False (by default, but is set by PROPERTIES). More details
are in Debug mode on page 6-14.

6-6 Using LI-6800 Background Programs

ASUS
Highlight

Clear clears the run log. Note that if you tap this accidentally, you can still see the
entire run log for that program by going to the Monitor screen and - if it still run-
ning - selecting the BP there (it will have PID=0).

When a program is running in the Start screen, you can continue editing in the
Set and (if available) Build screens. You are also allowed to press Open BP, loading
a completely different program into the Build and Set screens. None of these
changes will have any effect on the BP running in Start. Once it is finished, how-
ever, the program displayed in the Start will update to whatever changes you might
have made.

Section 6. Screen reference

6-7The Start screen

Section 6. Screen reference

TheMonitor screen
The Monitor screen allows you to see all running BPs, and selectively monitor pro-
gress, or Cancel, Pause, etc. Debug mode on page 6-14 can be used, as well as the
Start screen.

Figure 6-6. Running a BP.

There is a second method to access the Monitor Screen(Figure 6-7 below).

Figure 6-7 . Access the Monitor Screen from Start Up.

6-8 Using LI-6800 Background Programs

Set screen interface tools
The interface tools for setting steps are explained below.

Simple objects
A dropdown menu displays a fixed list of choices when you tap it (Figure 6-8
below). Note: There may be more items in the list than are shown; you won't know
until you try scrolling (touch and drag) down.

Figure 6-8. Drop down menus display fixed choices.

Tapping in an edit box will cause the full keyboard to appear (Figure 6-9 below). See
Overview on page 2-1.

Figure 6-9. Edit boxes use the full screen keyboard.

Section 6. Screen reference

6-9Set screen interface tools

Section 6. Screen reference

The combo box is a combination of an edit box and a menu.

Figure 6-10. Combo box illustration.

Buttons are used to access the appropriate support dialog.

Figure 6-11. When editing BPs, buttons access dialogs.

File names are sometimes specified with a combination of button and edit box (Fig-
ure 6-12 on the facing page). Don't forget that strings should be quoted.

6-10 Using LI-6800 Background Programs

Figure 6-12. Picking a file name can be done by simply typing or picking (if the file
exists), or any combination.

Control table
The Control Table window is used in the LOOP [Control] interface. It is a table
whose rows correspond to controls, and whose columns correspond to set points.
Thus, in the example below, Light and Fan speed are being set (together) to 5 set-
points each.

Figure 6-13. The Control Table dialog.

Section 6. Screen reference

6-11Control table

ASUS
Highlight

Section 6. Screen reference

You can have sparse entries in the table (Figure 6-14 below), either by entering an
empty entry for a cell, or by successive commas when editing a line. The rule is, if
there is not a valid entry for a control for that setpoint, no change will be made to
that control.

Figure 6-14. Missing values are allowed.

Figure 6-15. Configured for a light curve at a particular color and CO2 concentration.

Note that no Control Table entry is passed to Python's eval(), so you cannot use
expressions or variable names.

Data dictionary
The Data Dictionary dialog is used in ASSIGN for assigning a local variable. It is a
dialog similar to the one used in Data Dictionary in Start Up. Items are arranged by
Group.

Figure 6-16. The Data Dictionary dialog.

6-12 Using LI-6800 Background Programs

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Underline

ASUS
Highlight

Control dictionary
The Control Dictionary is used for selecting a control or constant that can be set.
The SETCONTROL and AUTOENV [Define] steps use it. For contents, see Control dic-
tionary map on page 8-1.

Figure 6-17. The Control Dictionary user interface.

Status dictionary
The Status Dictionary is used for selecting a system value (that is not in the Data
Dictionary) to be monitored with the ASSIGN step. For contents, see Status dic-
tionary map on page 9-1.

Figure 6-18. The Status Dictionary user interface.

Section 6. Screen reference

6-13Control dictionary

Section 6. Screen reference

Debug mode
When a program is in a paused state, Resume gets it running again. When a BP is
paused, Trigger will only execute the next step, and the program remains paused.
This allows you to slowly walk through your program (Trigger, Trigger, Trigger,...)
at your own pace. This is Debug Mode. While in this mode, each step produces out-
put in the run log indicating what will happen next, even if Verbosity (in the
PROPERTIES step) is False.

To put a running program into a paused state, tap Pause. You can also pause a pro-
gram at a certain place by inserting a PROPERTIES step there, with Pause = True.

An example of operating in Debug mode follows, with the simple program shown.
Note the first step is PROPERTIES, with Pause set to True.

Tap Start and the BP immediately pauses because of the PROPERTIES statement
with Pause=True.

Tap Trigger. The run log indicates it is about to do an ASSIGN. Note that the high-
lighted line and run log output are indications of what will happen when you tap
Trigger.

Tap Trigger. The run log indicates it is about to do a SETCONTROL, setting Qin to f,
which is 100.

Tap Trigger. The run log indicates it is about to do WAIT. Tap Trigger again to actu-
ally begin the WAIT.

6-14 Using LI-6800 Background Programs

ASUS
Underline

Tap Trigger. The run log indcicates it is about to do SETCONTROL. Tap Trigger
again to actually do the SETCONTROL.

Directory information
The "home" directory for BPs is /home/licor/apps. You are free to store your BPs
here, or in any subdirectories you may care to make. The system does ensure that
there are several subdirectories present (listed below), and populated with some
files that are write protected: you will not be able to overwrite them, but you can
delete them. (If you do accidentally delete one, it is automatically replaced the next
time the instrument powers up.)

l /home/licor/apps/basic. Contains a basic set of programs.
l /home/licor/apps/examples. Examples used in this document.
l /home/licor/apps/system. This directory contains a number of programs that

support some features of the user interface. It also contains a suite of tests used
to verify BP operations.

l /home/licor/apps/tech. Contains useful tech BPs. In certain circumstances,
you might be instructed to run one of these as part of technical support or
troublshooting.

l /home/licor/apps/utilities. Potentially useful BPs.

There are some other BP-related directories that are created and maintained by the
system, and each contains one or more write-protected files. You are free to add
appropriate files to these directories, once you understand how these files are used.

l /home/licor/resources/defines. These are BPs that contain one DEFINE.
These files show up in the "Library Subroutines" portion of the source list (Fig-
ure 6-19 on the next page).

Section 6. Screen reference

6-15Directory information

ASUS
Underline

ASUS
Underline

ASUS
Highlight

Section 6. Screen reference

l /home/licor/resources/groups. These are BPs whose first step is a GROUP.
Files here show up in the Library Groups portion of the source list (Figure 6-19
below).

l /home/licor/resources/lib. Contains Python modules (.py files) that you
might want to link to BPs via the EXEC step.

Figure 6-19. These items come from the file system, so you can add your own and make
them available here (after a restart).

6-16 Using LI-6800 Background Programs

Saving BPs
BPs can be saved from either the Build screen or the Set screen.

The edit box at the top of either screen shows the name of the last loaded or saved
file (/home/licor/apps/unnamed if you tapped Clear All in Build or New in
Open/New), so if you tap Save, that file will be overwritten. An overwrite dialog is
produced.

Figure 6-20. You are alerted when overwriting a file.

Factory supplied BPs (in the directories described in Directory information on
page 6-15) are write protected, so it you wish to modify and save them, you will see
an error message (Figure 6-21 below). Similarly, you will get an error if you try to
write to a directory that is not there, or to one for which you do not have per-
mission.

Figure 6-21. Errors saving a BP are reported.

Use the edit box to rename the BP and/or change its location. If you aren't sure of
where to store a BP, follow the example in Section 6. on page 6-1: clear the whole
entry, enter a name, and tap. If your name does not start out with
/home/licor/apps, the system will prepend it automatically. Also, if you don't end
with .json, it is appended automatically. The final name is always reported back
(unless there is an error).

1 Tap in the edit box, clear it, and type in a new name.

Section 6. Screen reference

6-17Saving BPs

Section 6. Screen reference

2 Once the new name is entered, tap Save.

The edit box now reporst the full name actually used. Notice how the system con-
veniently supplies the base directory and/or the .py suffix ir you leave it off.

Note: No quotes needed here: this is not processed at run time, but is live.

Note: You have to actually tap the Save button to save it. Just typing in a name
on the keyboard dialog and tapping Done only sets the file name, it doesn't save
it.

6-18 Using LI-6800 Background Programs

Section 7.
Step reference

This section provides a reference for steps used in background programs.

- comment
A comment is just that, and is there to clarify things for the user.

Figure 7-1. Comment.

ASSIGN
ASSIGN creates a local variable for your program, which you name in the Name
field. There are numerous options:

Value or expression
The Value entry is evaluated with the Python eval() statement, and the result
assigned to the variable specified in Name entry. The result of the eval() determines
the Python type (str, float, int, list, etc.) of your variable. Values assigned to an
expression have 5 interface options for appearing in DIALOG.

7-1Using LI-6800 Background Programs

Section 7. Step reference

Figure 7-2. ASSIGN to an expression. See Grid items on page 7-16 for more details.

7-2 Using LI-6800 Background Programs

Data Dictionary value
A local variable can be assigned to anything that can be found in the Data Dic-
tionary (Figure 7-3 below). The assignment can be a 'snap shot' (capture the value,
and keep it) or tracked (variable continually updated automatically).

Figure 7-3. ASSIGN to a Data Dictionary value.

Section 7. Step reference

7-3Data Dictionary value

Section 7. Step reference

Status Dictionary value
A local variable can be assigned to anything that can be found in the Status Dic-
tionary (Figure 7-4 below). The assignment can be a 'snap shot' (capture the value,
and keep it) or tracked (variable continually updated automatically).

Figure 7-4. Status.

7-4 Using LI-6800 Background Programs

(Advanced) Topic and Key
The Topic and Key option provides a general purpose method to get to almost any
item (or groups of items), even if they are not in the Data or Status Dictionaries.
Most values of interest have a topic and name (key). Every item in the Data Dic-
tionary also has a group and label. The system's Data Dictionary shows group, label,
name, and topic (Figure 7-5 below).

l Topic: the topic under which this item is published in internal LI-6800 com-
munications. Except for its appearance in the Data Dictionary, topic is otherwise
hidden from the user interface.

l Name: the unique (for that topic) identifier for this item.
l Group: A collection of items.
l Label: Often the same as Name, but can be different.

Group and Label are often used as identifiers (Figure 7-5 below).

Figure 7-5. Group and label show up several places (and in different order) in the inter-
face, including grids, graphs, and the stability screen.

Section 7. Step reference

7-5(Advanced) Topic and Key

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

Section 7. Step reference

Figure 7-6. Name, Group, and Topic.

In Figure 7-6 above, we are looking at the entry for Qamb_out, but that is just it’s
screen label. It’s real name is PPFD_out, and it can be gotten via the topic
(licor/li6850/output/DATA), or the group (Meas).

Figure 7-7 on the facing page shows how to use ASSIGN [Topic and Key] to access
the entire collection of items in group Meas:

7-6 Using LI-6800 Background Programs

Figure 7-7. Leaving the ‘Key’ black returns a dictionary of everything in the Group or
Topic.

What can you do with this? Here is an example: the program
/home/licor/apps/examples/LogMeas.py illustrates how to log everything in the
Meas group to a comma separated file, with elapsed time, as fast as new data sets
are available.

Section 7. Step reference

7-7(Advanced) Topic and Key

Section 7. Step reference

Figure 7-8. Logging the Meas group, with elapsed time.

The output of this program is shown in Listing 7-1 on the facing page.

Elapsed , 'CO2_r', 'CO2_s', 'Fan_speed', 'Flow', 'H2O_r', 'H2O_s', 'Offset',
'Offset2', 'PPFD_in', 'PPFD_out', 'Pchamber', 'Press', 'TIME', 'Tchamber',
'Tleaf', 'Tleaf2'

0.044217 , 162.356, 164.168, 0, 600.006, 4.26871, 4.24712, 0, 0, 0.811979,
11.1801, -0.00557787, 97.3788, 1549397993.6, 26.6202, 21.6749, 997.995

0.276225 , 162.335, 164.184, 0, 599.989, 4.26887, 4.247, 0, 0, 0.819595,
11.1801, -0.00569272, 97.3789, 1549397994.1, 26.6191, 21.686, 997.981

0.788974 , 162.331, 164.182, 0, 599.983, 4.26883, 4.24701, 0, 0, 0.830257,
11.1801, -0.00573881, 97.3794, 1549397994.6, 26.6181, 21.7068, 997.96

1.219423 , 162.33, 164.191, 0, 599.989, 4.26866, 4.24707, 0, 0, 0.853101,
11.1801, -0.00577292, 97.3796, 1549397995.1, 26.6173, 21.7342, 997.934

1.85875 , 162.337, 164.201, 0, 600.013, 4.26838, 4.24726, 0, 0, 0.869853,
11.1801, -0.00571798, 97.3801, 1549397995.6, 26.6169, 21.7587, 997.926

2.278488 , 162.359, 164.205, 0, 600.005, 4.26831, 4.24704, 0, 0, 0.86224,
11.1801, -0.0057185, 97.3801, 1549397996.1, 26.6169, 21.7815, 997.928

2.801033 , 162.367, 164.202, 0, 600.037, 4.26825, 4.24704, 0, 0, 0.854626,
11.1801, -0.00566928, 97.3802, 1549397996.6, 26.6169, 21.795, 997.928

3.281008 , 162.386, 164.218, 0, 600.009, 4.2684, 4.24721, 0, 0, 0.847013,
11.1801, -0.00566537, 97.3798, 1549397997.1, 26.6169, 21.8024, 997.926

3.809381 , 162.402, 164.22, 0, 600.015, 4.26823, 4.24701, 0, 0, 0.837876,
11.1801, -0.00561485, 97.3793, 1549397997.6, 26.6169, 21.7904, 997.924

4.261619 , 162.42, 164.214, 0, 600.008, 4.26816, 4.2471, 0, 0, 0.822646,
11.1801, -0.0055487, 97.3793, 1549397998.1, 26.6169, 21.7655, 997.922

4.794935 , 162.444, 164.221, 0, 600.03, 4.2682, 4.24693, 0, 0, 0.810461,
11.1801, -0.00549713, 97.3787, 1549397998.6, 26.6164, 21.7421, 997.929

7-8 Using LI-6800 Background Programs

5.244639 , 162.491, 164.239, 0, 600.011, 4.26834, 4.24663, 0, 0, 0.810461,
11.1801, -0.00545026, 97.3785, 1549397999.1, 26.6156, 21.7197, 997.943

5.888604 , 162.547, 164.228, 0, 600.003, 4.26827, 4.24641, 0, 0, 0.807415,
11.1801, -0.00548854, 97.3784, 1549397999.6, 26.6146, 21.6891, 997.945

6.246275 , 162.608, 164.239, 0, 599.998, 4.26845, 4.24642, 0, 0, 0.792185,
11.1801, -0.00545416, 97.3788, 1549398000.1, 26.6135, 21.6532, 997.938

6.887768 , 162.666, 164.233, 0, 599.985, 4.26856, 4.24679, 0, 0, 0.778478,
11.1801, -0.00550391, 97.3785, 1549398000.6, 26.6125, 21.6257, 997.939

7.343789 , 162.712, 164.229, 0, 600.01, 4.26845, 4.24664, 0, 0, 0.770865,
11.1801, -0.0055724, 97.3789, 1549398001.1, 26.6117, 21.6039, 997.946

7.768044 , 162.746, 164.234, 0, 600.008, 4.2684, 4.24698, 0, 0, 0.766297,
11.1801, -0.00558334, 97.3792, 1549398001.6, 26.6112, 21.5872, 997.95

8.230504 , 162.761, 164.235, 0, 599.988, 4.26836, 4.24708, 0, 0, 0.77391,
11.1801, -0.00564896, 97.3795, 1549398002.1, 26.6109, 21.574, 997.953

8.756039 , 162.752, 164.235, 0, 599.962, 4.26828, 4.24725, 0, 0, 0.780001,
11.1801, -0.00570001, 97.38, 1549398002.6, 26.6111, 21.5457, 997.95

9.268605 , 162.711, 164.223, 0, 599.997, 4.26825, 4.24755, 0, 0, 0.780001,
11.1801, -0.00577735, 97.3802, 1549398003.1, 26.6117, 21.5073, 997.944

9.797924 , 162.667, 164.235, 0, 600, 4.26832, 4.24757, 0, 0, 0.781524, 11.1801,
-0.00581069, 97.3799, 1549398003.6, 26.6126, 21.4895, 997.945

Listing 7-1. Listing of /home/licor/logs/meas values.txt.

(Advanced) XML value
There are a number of "lower-level" values that come from communication with
the actual hardware devices (console, head, fluorometer). Many of these are repack-
aged and available through the Data or Status Dictionaries, but not everything. To
access (get and set) these, it is necessary to use an XML interface.

Figure 7-9. Assigning a value using xml.

This XML entry licor/li6850/cfg/pump/speed is a shorthand for selecting the
XML value at

Section 7. Step reference

7-9(Advanced) XML value

ASUS
Highlight

Section 7. Step reference

<licor><li6850><cfg><pump><speed>value</speed></pump></cfg></li6850>
</licor>

AUTOENV
AUTOENV provides a means for a BP to configure and control any of the 6 Auto
Controls. There are four sub-options (`Actions') for an AUTOENV step, and are
illustrated in the figures below.

A BP can configure and start an AutoEnv, but note that once running, the AutoEnv
is independent of the BP that started it; it will keep running when the BP ends,
unless the BP stops it or the AutoEnv hits an end with AutoRepeat off.

With Action set to Define (Figure 7-10 below), you can configure everything relating
to the Y-axis.

Figure 7-10. How the controls of AUTOENV [Define] map to the user interface.

With Action set to Set time & direction (Figure 7-11 on the facing page), you can set
direction and location on the time axis.

7-10 Using LI-6800 Background Programs

ASUS
Underline

Figure 7-11. The AUTOENV [Set time & direction] controls set the direction and location
(time).

With Action set to Start or Stop (Figure 7-12 below), you can turn the AutoEnv on
or off.

Figure 7-12. AUTOENV [Start] and [Stop].

Figure 7-13 on the next page illustrates the use of AUTOENV.

Section 7. Step reference

7-11AUTOENV

Section 7. Step reference

Figure 7-13. Running the AUTOENV test program.

Note that there is nothing in the AUTOENV user interface that actually captures
the current state of any AutoEnv; it is write-only, basically. You can, however, get a
dictionary of AutoEnv configuration information via ASSIGN[Topic and Key],
using the topic licor/li6850/scripts/autoenv/x/constants where x is 1, 2, ... 6.

7-12 Using LI-6800 Background Programs

ASUS
Highlight

BREAK
BREAK provides a way to exit from a LOOP or WHILE (Figure 7-14 below).

Figure 7-14. Using BREAK to exit a LOOP.

CALL and DEFINE
DEFINE is the BP equivalent of a subroutine or function. It defines a collection of
program steps that can be called from anywhere (CALL), and have parameters
passed to it.

Variable scope
User defined variables are local to the main program, or to the DEFINE function in
which they are created (see EXEC on page 7-22 for a method to make variables that
are global in scope).

Figure 7-15. Illustration of the local scope of BP variables.

Passing by value or reference
Part of designing a DEFINE is specifying for each argument whether it is passed by
value or reference.

Section 7. Step reference

7-13BREAK

ASUS
Arrow

ASUS
Arrow

ASUS
Typewriter
首先调用xyz

Section 7. Step reference

Normally you pass by value, which means it is the value of the argument in the
CALL statement that is important. You can use an expression or variable for that
argument in the calling statement (e.g., CALL Something(x1, x2/16.2)).

Passing by reference forces you to use a variable name, and any changes to the
value of that variable are "passed back" to the calling context. Figure 7-16 below
illustrates. The DEFINE PassByTest takes two arguments, val is pass-by-value, ref is
pass-by-reference. The function doubles both values that are passed in. In the call-
ing context, this does not affect the pass-by-value variable a, but does affect b, which
gets the final value of ref.

Figure 7-16. Comparison of pass-by-value and pass-by-reference.

Thus, passing by reference is typically the method to use if you want to get some
information back from a DEFINE, rather than just pass information to it.

7-14 Using LI-6800 Background Programs

DIALOG
DIALOG displays a dialog box for obtaining input from the user (Figure 7-17 below)

Figure 7-17. The parts of a BP dialog, and how they are configured in a DIALOG step.

The DIALOG's setup interface (Figure 7-17 above bottom) allows you to specify the
dialog's parameters:

Section 7. Step reference

7-15DIALOG

Section 7. Step reference

l Title should be a string, or string variable name. The system always appends "
(BP#n)" to the title, where n is the BP's pid number.

l Subtitle should be a string or a string variable name.
l Text box (optional) should be a string or string variable. To force line breaks,

embed a nn (backslash n) in the string.
l Grid items (optional) is a list of variables whose values can be edited in the dia-

log.
l Buttons is a list of button labels. In no list is specified, an "OK" button will be

provided.
l Button result name. The BP variable that will contain the label of the button the

user taps (closing the dialog). The DIALOG step will create this variable if it
doesn't already exist.

While the dialog is displayed, the BP is in a wait state until the user presses one of
the dialog's buttons.

Grid items
Grid items are items with a user interface, and can be added to a dialog by includ-
ing one or more variable names in the Grid items list of the DIALOG's con-
figuration. Each name is used to access the current value of the variable, and the
Dialog interface information that was in the ASSIGN or TABLE setup for that vari-
able.

A Checkbox (Figure 7-18 below) is an appropriate interface for a variable that can
have a True or False value. The item label tells how the check box is to be labeled.

Figure 7-18. Check box.

A Dropdown list (Figure 7-19 on the facing page) is appropriate for letting the user
select from a scrollable list.

7-16 Using LI-6800 Background Programs

ASUS
Underline

ASUS
Highlight

ASUS
Highlight

Figure 7-19. Dropdown list.

An Editbox (Figure 7-20 below) is suitable for strings or values. There is also a
checked option.

Figure 7-20. Edit boxes can be checked or unchecked.

The Radio buttons option (Figure 7-21 on the next page) is appropriate for letting
the user select from a small selection. If your label and list of items is too long, it
will not all be visible in the dialog box.

Section 7. Step reference

7-17Grid items

Section 7. Step reference

Figure 7-21. Radio buttons list.

The Text dialog option (Figure 7-22 below) is not editable, but is useful for showing
the current value. This is the only dialog option available for all ASSIGN items.

Figure 7-22. The text option shows current value.

The Table and Text summary dialog options (Figure 7-23 on the facing page) are
available for variables assigned to the TABLE; one is editable, one is not.

7-18 Using LI-6800 Background Programs

Figure 7-23. Dialog options for TABLE.

Section 7. Step reference

7-19Grid items

Section 7. Step reference

_dlg variables
When you enable Dialog interface information in an ASSIGN or TABLE step, the
system creates a second BP variable based on the Name field. For example, in Figure
7-23 on the previous page, a variable named table is created that points to the con-
trol table, but because there is dialog interface information enabled, a second vari-
able named table_dlg is created that contains that information. This auxiliary
variable is always named for the Name entry, with _dlg appended.

_dlg variables can be accessed and manipulated, just like any other variable. You
could include one in a SHOW statement, for example, to learn its structure. You
can also create them explicitly, if you want to include a information in a Dialog for
a variable that was not created by ASSIGN or TABLE.

To illustrate, the check box configuration in Figure 7-18 on page 7-16 is doing this
Python equivalent:

xyz = False
xyz_dlg = {'interface': 1, 'target': 'early', 'label': 'Allow early
matching'}

The drop down configuration in Figure 7-19 on page 7-17 is doing this Python equi-
valent:

loc = 'Plot AD157'
loc = 'Plot AD157'
loc_dlg = {'interface': 3, 'values': ('Plot AD157', 'Plot AE200',
'Plot AE201', 'Greenhouse'),
'label': 'Measurement location', 'target': 'loc'}

The edit box configuration in Figure 7-20 on page 7-17 is doing this Python equi-
valent:

abc = 4.5
abc_dlg = {'target': 'abc', 'description': 'Your best estimate',
'units': 'cm\u00b2',
'interface': 2, 'label': 'Damaged area', 'checkable': False,
'width': 0}

The checkable version of edit box does this:

abc = {'value': 4.5, 'checked': False}
abc_dlg = {'target': 'abc', 'description': 'Your best estimate',
'units': 'cm\u00b2',

7-20 Using LI-6800 Background Programs

'interface': 2, 'label': 'Damaged area', 'checkable': True, 'width':
0}

The radio button configuration in Figure 7-21 on page 7-18 is doing this Python
equivalent:

loc = 'Plot AD157'
loc_dlg = {'interface': 8, 'values': ('Plot AD157', 'Plot AE200',
'Plot AE201', 'Greenhouse'),
'label': 'Where', 'target': 'loc'}

Things to consider
Some facts about DIALOGs:

l When a DIALOG statement is encountered in the BP, the dialog is presented. It
remains on the screen until the user presses one of the displayed buttons. If no
buttons are specified, there will be one OK button by default.

l While a DIALOG is being displayed, BP program execution remains on the BP's
DIALOG step even if the user interacts with editable items (check boxes, edit
boxes, etc.).

l BP variables editable by a DIALOG receive their updated values as they are
edited. Including a Cancel button, for example, does not mean that pressing
Cancel undoes any edits that may have been made. (You can support that beha-
vior, of course, but you have to program for it outside of the DIALOG step.)

Section 7. Step reference

7-21Things to consider

Section 7. Step reference

EXEC
EXEC performs the Python exec() function on the text in the 'Source' entry box, or
on the file named by ‘Source’. A simple example in Figure 7-24 below illustrates: we
use EXEC to define two variables.

Figure 7-24. Defining two variables in an EXEC.

More complicated code can be put in a separate file and referenced by the EXEC. Fig-
ure 7-25 below illustrates how to add this capability to a BP.

Figure 7-25. Adding extended functionality via EXEC.

Local vs global
If the Scope setting of an EXEC is Local, then variables defined in the EXEC are
available only from the context in which the EXEC occurs. The Global option
means whatever is defined in the EXEC is available anywhere (e.g., in any function)
in the rest of the program. See Figure 7-26 on the facing page.

7-22 Using LI-6800 Background Programs

ASUS
Underline

Figure 7-26 . Local (top) vs Global (bottom). The locally defined linearList is not avail-
able from within the MyFct subroutine.

GROUP
A GROUP is a container for program steps. It has an ‘Enabled’ property that determ-
ines whether or not the contained steps execute at run time. Thus, GROUP provides
a convenient way to enable/disable sections of your program.

Figure 7-27. Example of an GROUP structure.

Section 7. Step reference

7-23GROUP

ASUS
Highlight

Section 7. Step reference

IF, ELSE IF, ELSE
The IF step can be made into any of three types: IF, ELSE IF, and ELSE.

Figure 7-28. Example of an IF structure.

While building a BP, there is nothing that ties any of these IF variations together,
so it is up to you to arrange them appropriately.

l IF always marks the start of a new IF structure.
l After the IF, there can be as many ELSE IFs as you need.
l ELSE is optional, there can be only one, and it must come last.

If there is a misplaced ELSE or ELSE IF, then you will get an error message:

7-24 Using LI-6800 Background Programs

LOG
The LOG statement cover all aspects of the normal LI-6800 log operations; it can
open a log file, log a remark, log data, or close the file.

Open file
Figure 7-29 below illustrates opening a log file with a programmatically determined
name. You can use File... to select an existing file, and modify the name in the edit
box, or just type the name or expression into the edit box.

Figure 7-29 . Opening a log file with a programamtically determined name.

If a log file is already open when a LOG [Open file] is executed, the file will be
closed first, and the new file opened.

Section 7. Step reference

7-25LOG

Section 7. Step reference

Record remark
Adds a remark string to the file. This is skipped if no log file is open.

Figure 7-30. Logging a remark.

If you wish for some reason to retrieve the latest logged remark, it is available via
LOG:LastRem in status dictionary.

Record data
LOG[RecordData] triggers a log event, or is just skipped if no log file is open. You
can override the current log options for this event if you so choose.

Figure 7-31. LOG allows you to temporarily override log options.

Close file
The LOG[Close file] option takes no parameters. If no file is open when this is
executed, it does nothing.

Figure 7-32. Closing a log file.

7-26 Using LI-6800 Background Programs

ASUS
Underline

LOOP
LOOP contains steps that execute repeatedly. It comes in five types: Count, Dur-
ation, Control, List and File.

Count
If you wish to cycle a fixed number of times, use the LOOP [Count] option. You can
define a variable to access the count (0, 1, ...). You can regulate the loop with ‘Min-
imum time per cycle’, otherwise it will be limited 0.1 seconds.

Figure 7-33. Loop Count, 5 loops, index is x, and no timing regulation.

Section 7. Step reference

7-27LOOP

Section 7. Step reference

Duration
If you wish to cycle for some time duration, use the LOOP [Duration] option. You
can define a variable that contains the number of seconds that program execution
has been in the loop.

Figure 7-34. LOOP [Duration], 5 seconds total, with timing via when new data is avail-
able (‘Min time = 0’)

7-28 Using LI-6800 Background Programs

List
If you wish to cycle through a list of items of any type, use LOOP [List]. On each
pass through, the associated variable that you name is assigned to an item from the
list. It also works on Table variables.

Figure 7-35. LOOP [List] example.

File
If you wish to process lines in a file, one at a time, use LOOP [File]. It a file, and
executes the loop once for each linen in the file. You define a variable that will con-
tain the line for each loop. If you wish, you can have the line parsed, in which case
the variable will be a list of the items found.

Figure 7-36. Configuring LOOP [File].

See /home/licor/apps/system/tests/LOOP_file_test.py. This program parses
three sample input files, listed below (spaces and tabs are shown as printable char-
acters in the space and tab files). The files reside in /home/licor/apps/sys-

tem/tests/inputs/.

Section 7. Step reference

7-29List

Section 7. Step reference

Figure 7-37. LOOP [List] example.

Note that in each case, the unparsed line is always a string, and the parsed pieces
are always strings. Turning a string into a number in Python is easy (float() func-
tion), but you may not need to. If you were using these values to set a control, the
SETCONTROL controls will do the conversion for you.

7-30 Using LI-6800 Background Programs

PROPERTIES
The PROPERTIES lets you programmatically pause a BP, and also controls the BP’s
verbosity (run log output).

Figure 7-38. Using the PROPERTY step to pause a program.

Verbose, which defaults to off, controls how much gets written to the run log.
With Verbose set to False, the only output to the run log will be start and stop mes-
sages, SHOW output, and warnings and errors. With verbose set to True, nearly
every step will contribute to the run log.

If the Pause property is true, the BP will pause when it encounters that step while
running. This is useful for debugging purposes (see Debug mode on page 6-14), or
indefinitely pausing a program until the user wishes to resume.

RETURN
The RETURN step exits a DEFINE, or exits the main program.

There are no parameters associated with RETURN. If you wish to return a value
from a DEFINE, use the pass-by-reference feature for a passed parameter (see Passing
by value or reference on page 7-13).

RUN
RUN is how a BP can launch another BP.

Figure 7-39. A BP that launches two other BPs.

Section 7. Step reference

7-31PROPERTIES

Section 7. Step reference

SETCONTROL
SETCONTROL allows you to set a control or system constant. The button in the Tar-
get line will access the control dictionary. The Value line will have slightly dif-
ferent looks depending upon the control.

Figure 7-40. The SETCONTROL interface varies with target.

If you wish to select the target at run time instead of at design time, then use the
Target (from expression) field. This will override whatever the button label is. For
example, if you wish to read targets and values from a file, you could put a
SETCONTROL in a loop that reads the le, and each pass through the loop sets target
to x[0] and value to x[1], assuming x held the parsed line, and each line held 2
items: target (string) and value (number or expression).

When the 'Value' is a ComboBox, as in the Dio1 example above, the non-fixed
entry allows you to select the choice at run time, rather than design time. Table 7-1
on the facing page illustrates some entry choices for Dio1.

7-32 Using LI-6800 Background Programs

ASUS
Underline

ASUS
Underline

ASUS
Underline

ASUS
Underline

Typed in
Value

Result

high At design time, same as selecting high from the menu.
'high' At run time, evaluates to a string, so becomes high.
0 At run time, sets Dio1 like you had picked low.
xxx At run time, assuming you have defined xxx, and it evaluates to 'high', 'low',

'input', 1, 0, or -1, then this is fine.
'in'+'put' At run time, evaluates to a string ('input'), so same as input.
99-100 At run time, evaluates to -1, so same as input.

Table 7-1. Options for entering SETCONTROL Dio1.

SHOW
SHOW prints to the run log. You can specify a list of variables, or specify a format-
ted string.

Figure 7-41. Using SHOW.

Section 7. Step reference

7-33SHOW

Section 7. Step reference

TABLE
A TABLE is a named control table that can be executed by making it the target of a
LOOP [List].

Figure 7-42. TABLE are executed in a LOOP [list].

The LOOP will loop over the number of settings found in the top row of the table.
Each pass through, it sets the table's row targets (top to bottom), to the value in
that row's column. If an entry is blank, it skips that target. Thus, if only the first
column in the table for a particular row has an entry, that value will only be set
once.

7-34 Using LI-6800 Background Programs

Structure of a TABLE variable
Consider a TABLE with two controls, one for light intensity, and one color, and an
auxiliary constant for wait times (Figure 7-43 below).

Figure 7-43. A table with two controls and an auxiliary constant.

A variable table is a Python dictionary with two keys:

l "values" - a list, each item is a tuple containing a string (the target) and a list
(list of set points).

l "aux" - a dict, with keys corresponding to the strings (targets) in the "values"
list. The keys for each item are:
l "control": True or False
l "staticmeta": True or False. If True, there will also be keys for "units" and

"format".

Section 7. Step reference

7-35Structure of a TABLE variable

Section 7. Step reference

{
"values": [

[
"Qin",[1500,1000,500,100]

],
[

"Color_Qin",["r60","r70","r80","r90"]
],
[

"wait",[2,3,4,5]
]

],
"aux": {

"Color_Qin": {
"control": True,
"staticmeta": False

},
"wait": {

"units": "mins",
"format": ["f",1,2],
"control": False,
"staticmeta": True

},
"Qin": {

"control": True,
"staticmeta": False

}
}

}
Listing 7-2. An example of a TABLE variable.

7-36 Using LI-6800 Background Programs

ASUS
Underline

Custom executions
If you need to customize how a TABLE is handled during run time, then you
should start with Figure 7-44 below which illustrates the functional equivalent of
the standard processing that LOOP [List] provides.

Figure 7-44. A template program for how to explicitly program the execution of a table.

WAIT
WAIT has three types: Duration, Stability, Until a time of day, and for an Event or
condition. All but the last type of wait will put a countdown on the Start screen
and/or Monitor screen (when selected).

Section 7. Step reference

7-37Custom executions

Section 7. Step reference

Figure 7-45. Wait countdown.

Duration
WAIT [Duration] suspends execution for the specified amount of time.

Figure 7-46. Wait duration.

Stability
WAIT [Stability] has two parts. Part 1 is the minimum time. From the end of that
until the maximum time, the wait will be terminated if the current stability defin-
ition is met. In the interval between 30 seconds after the start of the wait, and 60
seconds before the maximum time, a match will occur if Early matching is True,
and if the reference IRGAs (Cr and Hs) meet the following stability criteria:

7-1

7-38 Using LI-6800 Background Programs

Figure 7-47.Wait [stability] example.

Until
WAIT [Until] waits for a time of day. Figure 7-48 on the next page shows multiple
ways to achieve the same thing.

Section 7. Step reference

7-39Until

Section 7. Step reference

Figure 7-48.Wait [until] example.

If no date is specified and the specified time has passed when the statement
executes, the program will wait until the next day.

The ‘String’ format (lower left in Figure 7-48 above) is an alternative way to specify
time and date; the advantage is that allows you to programmatically specify it if you

7-40 Using LI-6800 Background Programs

choose. To include a date, specify the strptime1 in the 'Format' box. Otherwise, just
specify the string as decimal hours, or hh:mm, as illustrated in Table 7-2 below.

[Date] time Format Interpreted as

10 10:00:00 am
5.5 05:30:00 am
14:22 14:22:00 pm
8:30:6 08:30:06 am
6 Dec 2019 12:33:45 %d %b %Y%H:%M:%S 6 Dec 2019 12:33:45

Table 7-2. Some examples of specifying time and date. The format string is not
really needed unless you wish to specify a date along with the time.

Event
WAIT [Event] waits until the test you have specified becomes True. The example in
Figure 7-49 on the next page is as close as you may come to a game on the LI-6800.
It simply times how long it takes you to get the flow rate2 below 400.

1See http://pubs.opengroup.org/onlinepubs/007904975/functions/strptime.html
2Cheat: you don’t have to do this via software or touch screen: you could just reach over and unplug the
hose going to the sensor head.

Section 7. Step reference

7-41Event

http://pubs.opengroup.org/onlinepubs/007904975/functions/strptime.html

Section 7. Step reference

Figure 7-49. The Wait [Event] example.

WHILE
WHILE loops while the specified condition is True. The ‘Minimum time per cycle’
specifies the minimum time interval that will separate each cycle through the loop.
Default is 0.1 seconds. Setting this to 0 means it will cycle when the next data set
become available (nominally every 0.5 sec).

The example in Figure 7-50 on the facing page will loop until the sample cell flow
rate exceeds 20 µmol/sec, so if you have the chamber closed and the pump running
before running this program, it will loop until you either open the chamber, or
stop the flow, or 1 minute has expired.

7-42 Using LI-6800 Background Programs

Figure 7-50.WHILE example.

Section 7. Step reference

7-43WHILE

Section 7. Step reference

7-44 Using LI-6800 Background Programs

8-1Using LI-6800 Background Programs

Appendix A.
Control dictionary map

The table below shows the control that can be set via SETCONTROL

Type Group Name Description

Auxiliary Analog AuxPwr Voltage for the auxiliary power port in
head

Dac1 D/A #1 (pin 2) setting
Dac2 D/A #2 (pin 3) setting
Dac3 D/A #3 (pin 4) setting
Dac4 D/A #4 (pin 5) setting

Digital ADC1Pullup ADC Channel 1 pullup (pin 21)
Dio1 Digital I/O port 1 (pin 6)
Dio2 Digital I/O port 2 (pin 7).
Dio3 Digital I/O port 3 (pin 8).
Dio4 Digital I/O port 4 (pin 9).
Dio5 Digital I/O port 5 (pin 10).
Dio6 Digital I/O port 6 (pin 11).
Dio7 Digital I/O port 7 (pin 12).
Dio8 Digital I/O port 8 (pin 13).
Excite5 5V Excitation (pin 25).
Power12 12V Power (pin 23).
Power5 5V Power (pin 14).

Appendix A. Control dictionary map

Type Group Name Description

Constants Fluorometry FLR:Adark Dark photosynthetic rate
FLR:Fm Value of dark adapted Fm
FLR:Fo Value of dark adapted Fo
FLR:PS2/1 Photosystem distribution factor

Gas
Exchange

Const:Geometry Leaf type
Const:Custom 1-sided BLC for custom
Const:K Stomatal ratio
Const:S Leaf area

Leaf Temp LTConst:deltaTw Wall temperature difference from air
temp (for en- ergy baance)

LTConst:fT1 Fractional contribution of leaf
thermocouple T1

LTConst:fT2 fractional contribution of leaf
thermocouple T2

LTConst:fTeb Fractional contribution of leaf energy
balance

Soil Soil:#Reps Soil measurement rep count per
measurement

Soil:CircPump_% Circulation pump speed
Soil:Duration Soil measurement duration

System SysConst:AvgTime System average time
SysConst:Oxygen Oxygen concentration

User Defined User:myfirst
User:mysecond

8-2 Using LI-6800 Background Programs

Type Group Name Description

Env
Controls

CO2 CO2 On/Off CO2 Controller on/off
CO2_% CO2 injector setting (0-100)
CO2_r Reference CO2 control set point
CO2_s Sample CO2 control set point

Color Color_All Color specifier for all sensors
Color_Con Color specifier for light source

attached to console
Color_Flr Color specifier for fluorometer
Color_Head Color specifier for light source

attached to head
Color_Qin Color specifier for all sensors

contributing to the leaf
Fan Fan On/Off Fan Controller on/off

Fan_% Fan speed power (0=off, 100=full)
Fan_blc Boundary layer conductance set

point (controlled by fan speed)
Fan_rpm Fan speed set point

Flow Flow Flow rate to chamber
Flow On/Off Flow Controller on/off
Flow_% Flow split setting (% to leaf chamber)
Pump Pump speed setting

H2O Desiccant_% Direct control of desiccant tube
(0=bypass, 100=full scrub)

H2O_On/Off H2O Controller on/off
H2O_% Direct H2O control from full dry (-

100) to full humidity (100)
H2O_r H2O Reference set point
H2O_s H2O Sample set point
Humidifier-% Direct control of humidifier tube

(0=bypass, 100=full wetting)
RH_air Chamber relative humidity set point
SD_air Saturation Deficit (air) set point
VPD_leaf Vapor Pressure Deficit (leaf) set point

Appendix A. Control dictionary map

8-3Appendix A. Control dictionary map

Appendix A. Control dictionary map

Type Group Name Description

Light Q_All All light source(s) set point
Q_Console Light source attached to console set

point
Q_Flr Fluorometer actinic set point
Q_Head Light source attached to head set

point
Qin Light incident on leaf set point

Pressure Pressure Chamber over-pressure pressure set
point

Pressure_On/Off Pressure Controller on/off
Pressure_% Chamber over-pressure control

setting
Temp Tair Chamber air temperature set point

Temp_On/Off Temp Controller on/off
Tleaf Leaf temperature set point
Txchg Heat exchanger set point

8-4 Using LI-6800 Background Programs

Type Group Name Description

Flr Settings Dark DARK:After Far red off time after actinic off
DARK:Before Turn far red on time prior to actinic

off
DARK:Duration Dark pulse duration
DARK:FarRed target Dark pulse far red target

Induction IND:Duration Induction flash duration
IND:Red target Induction flash red target

MPF MPF:Phase 1 MPF phase 1 duration
MPF:Phase 2 MPF phase 2 duration
MPF:Phase 3 MPF phase 3 duration
MPF:Ramp MPF ramp control
MPF:Red target MPF red target value

Measure Meas:AverageTime Averaging time for Fs and Fs’
Meas:DarkModRate Modulation rate for dark

measurements
Meas:FlashModRate Modulation rate during flash events
Meas:LightModRate Modulation rate for light

measurements
Meas:Modulation Modulation control:
Meas:Recording Turn flr recording on/off

RF RF:Duration Rectangular flash duration
RF:Red target Rectangular flash red target value

Log
Options

Flr FlrOpt:Action Fluorometer Action at Log
FlrOpt:Auto Threshold for Automatic MPF
FlrOpt:FlashType Fluorometer Flash Type
FlrOpt:MinFlash Minimum flash interval

Match MchOpt:CO2Change Match if CO2_r changed >
MchOpt:CO2Delta Match if |CO2_r - CO2_s| <
MchOpt:Choice Match when logging?
MchOpt:Elapsed Match if elapsed time by
MchOpt:H2ODelta Match if |H2O_r - H2O_s| <
MchOpt:H2OChange Match if H2O_r changed >

Std LogOps:MakeExcel Also create Excel log file
LogOpts:AvgTime Additional averaging time
LogOpts:Beep Beep on log

Appendix A. Control dictionary map

8-5Appendix A. Control dictionary map

Appendix A. Control dictionary map

Type Group Name Description

Misc Match Mode Mch:AvgTime Auto match stats averaging time
Mch:CO2 limit CO2 delta rate of change green light

threshold
Mch:H2O limit H2O delta rate of change green light

threshold
Mch:Mode Match mode action
Mch:Timeout Auto mode timeout time

Power
Settings

PowerState Sleep/Standby mode control

8-6 Using LI-6800 Background Programs

9-1Using LI-6800 Background Programs

Appendix B.
Status dictionary map

The table below shows the status values that can be monitored via ASSIGN.

Type Group Name Description

Auxiliary Analog AuxPwr Voltage for the auxiliary power port
in head

Dac1 D/A #1 (pin 2) setting
Dac2 D/A #2 (pin 3) setting
Dac3 D/A #3 (pin 4) setting
Dac4 D/A #4 (pin 5) setting

Digital ADC1Pullup ADC Chan1 pullup (pin 21)
Dio1 Pin 6: low, high, input
Dio2 Pin 7: low, high, input
Dio3 Pin 8: low, high, input
Dio4 Pin 9: low, high, input
Dio5 Pin 10: low, high, input
Dio6 Pin 11: low, high, input
Dio7 Pin 12: low, high, input
Dio8 Pin 13: low, high, input
Excite5 5V excitation (pin 25)
GPIO State summary (pins 13-6)
GPIOdir Direction summary (pins 13-6)
Power12 12V power (pin 23)
Power5 5V power (pin 14)

Appendix B. Status dictionary map

Type Group Name Description

Env Controls CO2 CO2:Label CO2_r, CO2_s, or blank
CO2:Percent CO2 injector target (if manual) %
CO2:Scrub auto, on, off
CO2:SetPoint CO2 setpoint (if auto) mol mol
CO2:Status 0=off, 1=manual, 2=off target, 3=on

target
Fan Fan:Percent Manual set pointmol s

Fan:SetPoint Automatic target (target units)
Fan:SetPoint_rpm Automatic target (rpm)
Fan:Status 0=off, 1=manual, 2=off target, 3=on

target
Fan:Target (if auto) RPM or BLC

Flow Flow:Percent Flow setpoint (if manual) mol s
Flow:Pump auto, high, medium, low, minimum,

off
Flow:SetPoint Flow setpoint (if auto) mol s
Flow:Status 0=off, 1=manual, 2=off target, 3=on

target
H2O H2O:PercentD % Desiccant (manual)

H2O:PercentH % Humidifier (manual)
H2O:SetPoint H2O setpoint (target units)
H2O:Status 0=off, 1=manual, 2=off target, 3=on

target
H2O:Target H2O_r, H2O_s, RH air, etc.
H2O:Teff Coolest temp in chamber
H2O:TlowLab Label of coolest chamber temp

9-2 Using LI-6800 Background Programs

Type Group Name Description

Env Controls
(continued)

Light Con:ColorMix Mix resulting from color spec
Con:ColorSpec Color specification
Con:Control off, setpoint, percent or test
Con:Info Console light source info
Con:Percent Manual %s: red blue farred
Con:Setpoint Actinic setpoint mol m s
Con:Status Con: 0=off, 1=manual, 2=off target,

3=on target
Con:Trans Transmittance
Flr:ColorMix Mix resulting from color spec
Flr:ColorSpec Color specification
Flr:Control off, setpoint, percent or test
Flr:Info Flr info
Flr:Percent Manual %s: red blue farred
Flr:Setpoint Actinic setpoint mol m s
Flr:Status Flr: 0=off, 1=manual, 2=off target,

3=on target
Flr:Trans Transmittance
Head:ColorMix Mix resulting from color spec
Head:ColorSpec Color specification
Head:Control off, setpoint, percent or test
Head:Info Head lightsource info
Head:Percent Manual %s: red blue farred
Head:Setpoint Actinic setpoint mol m s
Head:Status Head: 0=off, 1=manual, 2=off target,

3=on target
Head:Trans Transmittance

Appendix B. Status dictionary map

9-3Appendix B. Status dictionary map

Appendix B. Status dictionary map

Type Group Name Description

Env Controls
(continued)

Pressure Press:Percent Press setpoint (if manual) mol s
Press:SetPoint Flow setpoint (if auto) mol s
Press:Status 0=off, 1=manual, 2=off target, 3=on

target
Temp Temp:Hold Tleaf control suspended (chamber

open)
Temp:SetPoint Automatic set point
Temp:Status 0=off, 1=manual, 2=off target, 3=on

target
Temp:T2use 0=none or out, 1=in, 2=avg
Temp:Target Txchg, Tair, Tleaf
Temp:TleafOp Tleaf control option value
Temp:TleafOpID Tleaf control option ID

Log Options Flr FlrOpt:Action 0=None, 1=Flash, 2=Flash+Dark
FlrOpt:Auto Threshold for Automatic MPF
FlrOpt:FlashType 0=Auto, 1=RF, 2=MPF, 3=Ind
FlrOpt:MinFlash Minimum flash interval

Match MchOpt:CO2Change Match opt: CO2 changed >
MchOpt:CO2Delta Match opt: |CO2| <
MchOpt:Choice Never match / Always match / Only

match if
MchOpt:ChoiceNum Match: 0=Never, 1=Always, 2=If
MchOpt:Elapsed Match opt: elapsed time >
MchOpt:H2OChange Match opt: H2O changed >
MchOpt:H2ODelta Match opt: |H2O| <

Standard LogOps:MakeExcel Also create Excel log file
LogOpts:AvgTime Additional averaging time
LogOpts:Beep Beep on log

9-4 Using LI-6800 Background Programs

Type Group Name Description

Matching Auto
Config

Mch:AvgTime Auto match stats averaging time
Mch:CO2 limit CO2 delta rate of change green light

threshold
Mch:H2O limit H2O delta rate of change green light

threshold
Mch:Timeout Auto mode timeout time

Status Mch:AutoFrac Fraction complete of an automatic
match

Mch:LogLabel Match label (shown on log button)
Mch:Message Result of previous match
Mch:State 0=inactive, 1=manual, 2=automatic
Mch:ddCdt CO2 stability during match
Mch:ddHdt H2O stability during match

Misc Logging LOG:FileName Name of current log file
LOG:FileTS Timestamp of last opened log file
LOG:IsFileOpen Is a log file open?
LOG:LastRem Latest logged remark
LOG:ObsCount Observations logged
LOG:State Is a log event active?

Power PowerState on, standby, sleep
PowerValue 0=On, 1=Standby, 2=Sleep

Stability Stab:Stable Number of items checked for
stability

Stab:State Stability state: Stable/Total
Stab:Total Number of items stable

Appendix B. Status dictionary map

9-5Appendix B. Status dictionary map

Appendix B. Status dictionary map

9-6 Using LI-6800 Background Programs

Appendix C.
The list_utilitymodule

The following is a listing of the list_utility.py file on the LI-6800.

#!/usr/bin/env python3
-*- coding: utf-8 -*-
Thanks to Ari Kornfeld @ akorn@carnegiescience.edu

import numpy as np
from random import sample

def linearList(vv1, vv2, nn, rounded=2):
v1 - starting value,
v2 - ending value
n - number of values
v1 = float(vv1)
v2 = float(vv2)
n = int(nn)
v_range = [f for f in list(np.linspace(0, 1, num=n))]
setpoints = [v1 + f*(v2-v1) for f in v_range]
return list(np.around(setpoints, rounded))

def randomList(v1, v2, n, rounded=2):
return sample(linearList(v1, v2, n, rounded=rounded),n)

def makeOrtho(listOfLists, lock_index=-1, max_cor=0.1, outfile=''):
listOfLists should contain 2 or more lists of setpoints. If

sizes not equal, smallest size is n
returns listOfLists with setpoint sorted to provide maximum

orthogonality (minimum correltion)
if you don't want one of the lists sorted, specify that index

as lock_index. 0 = first list, 1 = 2nd, etc.
listCount = len(listOfLists)

10-1Using LI-6800 Background Programs

Appendix C. The list_utility module

n = np.min([len(x) for x in listOfLists]) # n is smallest list
size

print(n)
iter = 0
if max_cor < 0.05:

max_cor = 0.05
orthogonal_enough = False
p = lambda i: sample(listOfLists[i], n) if i != lock_index else

listOfLists[i][0:n]
while not orthogonal_enough:

result = np.matrix([p(i) for i in range(listCount)])
#to test bad ortho: data.frame(T=T_range, C=C_range, Q = Q_

range)
now check that the variables aren't too strongly

correlated
cor1 = np.corrcoef(result);
np.fill_diagonal(cor1, 0.0) # we don't care about self

correlation
print(cor1)

cc = np.max(np.abs(cor1))
print("cc=", cc)

orthogonal_enough = (cc < max_cor)
iter += 1
if (iter > 500):

max_cor = 0.2 # safety valve
print(iter, "iterations, cc=", cc)

if outfile != '':
try:

file = open(outfile, 'w')
print('corr_coeff=', cc, file=file)
for i in range(n):

line = ''
for j in range(listCount):

line += str(result[j,:].tolist()[0][i])+' '
print(line, file=file)

except Exception as e:
print('Exception in makeOrtho:', str(e))

return [result[i,:].tolist()[0] for i in range(listCount)] #
return a list of lists

10-2 Using LI-6800 Background Programs

if __name__ == '__main__':
n=12
t = linearList(25, 15, 3) + linearList(17, 45, n-3) # make temp

efficient to work through - no big jumps, and start at ambient.
c = linearList(50, 1000, n, rounded=0) # test size mismatch
q = linearList(20, 2000, n, rounded=0)
(t,c,q) = makeOrtho((t,c,q), lock_index=0,

outfile="/Users/jon/out.txt")
print(t)
print(c)
print(q)

Listing 10-1. Listing of /home/licor/resources/lib/list_utility.py.

Appendix C. The list_utility module

10-3Appendix C. The list_utility module

Appendix C. The list_utility module

10-4 Using LI-6800 Background Programs

C

M

Y

CM

MY

CY

CMY

K

cover_back_blank.pdf 1 8/15/16 1:28 PM

LI-CORBiosciences
4647 Superior Street
Lincoln, Nebraska 68504
Phone: +1-402-467-3576
Toll free: 800-447-3576 (U.S. and Canada)
envsales@licor.com

Regional Offices

LI-CORBiosciences GmbH
Siemensstraße 25A
61352 Bad Homburg
Germany
Phone: +49 (0) 6172 17 17 771
envsales-gmbh@licor.com

LI-CORBiosciences UKLtd.
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
United Kingdom
Phone: +44 (0) 1223 422102
envsales-UK@licor.com

LI-CORDistributor Network:
www.licor.com/env/distributors

977-18536 • 01/2020

	Section 1. Things you should know
	Nomenclature and symbols
	Python
	If you don't know Python
	Pay attention to the hints
	If you do know Python

	Consider using VNC

	Section 2. Overview
	Work flows
	A tour
	Start an existing BP
	Build a new BP

	Section 3. Some examples
	Early morning FoFm
	Variations on AutoLog
	Timing
	Log until sundown
	Varying the log interval

	Monitoring match mode
	Record and replay a time series

	Section 4. Response curves
	Basic
	Multiple controls
	Higher dimensions
	Variable stability wait times

	Section 5. Using dialogs
	Section 6. Screen reference
	The Open/New screen
	The Build screen
	The Set screen
	The Start screen
	The Monitor screen
	Set screen interface tools
	Simple objects
	Control table
	Data dictionary
	Control dictionary
	Status dictionary

	Debug mode
	Directory information
	Saving BPs

	Section 7. Step reference
	Appendix A. Control dictionary map
	Appendix B. Status dictionary map
	Appendix C. The list_utility module

